×

zbMATH — the first resource for mathematics

Disturbance rejection in nonlinear systems based on equivalent-input-disturbance approach. (English) Zbl 1410.93080
Summary: This paper presents a new system configuration and a design method that improves disturbance rejection performance for a nonlinear system. The equivalent-input-disturbance (EID) approach is used to construct an EID estimator that estimates the influence of exogenous disturbances and nonlinearities on the output of the system. Sufficient stability conditions for state- and output-feedback control are derived in terms of linear matrix inequalities. New EID-based control laws that combines an EID estimate with a state- or an output-feedback control laws ensure good control performance. A numerical example illustrates the design method. A comparison between the EID-based control, the conventional disturbance observer, the disturbance-observer-based-control, and the sliding mode control methods demonstrates the validity and superiority of the EID-based control method.

MSC:
93C73 Perturbations in control/observation systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Rebarber, R.; Weiss, G., Internal model based tracking and disturbance rejection for stable well-posed systems, Automatica, 39, 1555-1569, (2003) · Zbl 1028.93012
[2] Zarikian, G.; Serrani, A., Harmonic disturbance rejection in tracking control of Euler-Lagrange systems: an external model approach, IEEE Trans. Control Syst. Technol., 15, 118-129, (2007)
[3] Marconi, L.; Isidori, A., Input disturbance suppression for a class of feedforward uncertain nonlinear systems, Syst. Control Lett., 45, 227-236, (2002) · Zbl 0987.93053
[4] Tang, G. Y.; Gao, D. X., Feedforward and feedback optimal control for nonlinear systems with persistent disturbances, Control Decis., 20, 366-372, (2005)
[5] Tang, G. Y.; Zhao, Y. D., Optimal control of nonlinear time-delay systems with persistent disturbances, J. Optim. Theory Appl., 132, 307-320, (2007) · Zbl 1149.49030
[6] Guo, L.; Chen, W. H., Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach, Int. J. Robust Nonlinear Control, 15, 109-125, (2005) · Zbl 1078.93030
[7] Chen, W. H., Disturbance observer based control for nonlinear systems, IEEE/ASME Trans. Mechatron., 9, 706-710, (2004)
[8] Ding, Z. T., Global stabilization and disturbance suppression of a class of nonlinear systems with uncertain internal model, Automatica, 39, 471-479, (2003) · Zbl 1012.93057
[9] Ding, Z. T., Universal disturbance rejection for nonlinear systems in output feedback form, IEEE Trans. Autom. Control, 48, 1222-1227, (2003) · Zbl 1364.93332
[10] Ding, S. H.; Li, S. H., Stabilization of the attitude of a rigid spacecraft with external disturbances using finite-time control techniques, Aerosp. Sci. Technol., 13, 256-265, (2009)
[11] Yang, J.; Li, S.; Su, J.; Yu, X., Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances, Automatica, 49, 2287-2291, (2013) · Zbl 1364.93131
[12] Li, S. H.; Yang, J.; Chen, W. H.; Chen, X., Generalized extended state observer based control for systems with mismatched uncertainties, IEEE Trans. Ind. Electron., 50, 4792-4802, (2012)
[13] Kang, S.; Kim, H. J.; Tahk, M. J., Roll-pitch- yaw integrated robust autopilot design for a high angle of attack missile, J. Guid. Control Dyn., 32, 1622-1628, (2009)
[14] Gao, D. X., Nonlinear systems feedback linearization optimal zero-state-error control under disturbances compensation, TELKOMNIKA Indones. J. Electr. Eng., 10, 1349-1356, (2012)
[15] Gao, H. W.; Dong, R.; Li, J., Disturbance rejection with zero steady-state error for nonlinear large-scale systems, Control Decis. Conf., 3329-3334, (2011)
[16] Ge, S. Z.; Wang, C., Adaptive neural control of uncertain MIMO nonlinear systems, IEEE Trans. Neutral Netw., 15, 674-692, (2004)
[17] Chen, B.; Liu, X., Fuzzy approximate disturbance decoupling of MIMO nonlinear systems by backstepping and application to chemical processes, IEEE Trans. Fuzzy Syst., 13, 832-847, (2005)
[18] She, J.; Fang, M.; Ohyama, Y.; Wu, M., Improving disturbance-rejection performance based on an equivalent-input-disturbance approach, IEEE Trans. Ind. Electron., 55, 380-389, (2008)
[19] She, J.; Xin, X.; Pan, Y., Equivalent-input-disturbance approach-analysis and application to disturbance rejection in dual-stage feed drive control system, IEEE/ASME Trans. Mechatron., 16, 330-340, (2011)
[20] Zhang, A.; Lai, X.; Wu, M.; She, J., Stabilization of underactuated two-link gymnast robot by using trajectory tracking strategy, Appl. Math. Comput., 253, 193-204, (2015) · Zbl 1338.70033
[21] Mita, T.; Hirata, M.; Murata, K., h_∞ control versus disturbance observer based control, IEEE Trans. Ind. Electron., 45, 488-495, (1998)
[22] Khargonek, P. P.; Petersen, I. R.; Zhou, K., Robust stabilization of uncertain linear systems: quadratic stabilizability and h_∞ control theory, IEEE Trans. Autom. Control, 35, 356-361, (1990) · Zbl 0707.93060
[23] Ho, D. W.C.; Lu, G., Robust stabilization for a class of discrete-time nonlinear system via output feedback: the unified LMI approach, Int. J. Control, 76, 105-115, (2003) · Zbl 1026.93048
[24] Mita, T.; Hirata, M.; Murata, K.; Zhang, H., h_∞ control versus disturbance-observer-based control, IEEE Trans. Ind. Electron., 45, 488-495, (1998)
[25] Mita, T.; Hirata, M.; Murata, K.; Zhang, H., A control engineer’s guide to sliding mode control, IEEE Trans. Control Syst. Technol., 7, 328-342, (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.