×

zbMATH — the first resource for mathematics

Torsional vibration control of drill-string systems with time-varying measurement delays. (English) Zbl 1448.93100
Summary: This paper is concerned with torsional vibration control of drill-string systems. The objective is to develop a delay-dependent control scheme such that the downhole vibrations can be minimized by using ground measurement output with time-varying measurement delays. By regarding a drill-string as a series of lumped masses, a state space model is derived from a generic multi-degree-of-freedom model of the drill-string through a variable transformation. This provides the foundation of an observer-based output feedback control system, in which an internal model is inserted to represent the drill rig for improving the tracking performance, and a state observer is combined with a low-pass filter to estimate an equivalent effect of the downhole bit-rock interaction in the control input channel. To calculate the parameters of this control system, some sufficient conditions are derived in terms of linear-matrix-inequalities by taking into account a refined allowable delay set. It is shown through a numerical example that (i) the measurement of rotary table’s angular displacement helps to produce less conservative results and (ii) a small measurement delay is beneficial for designing a controller with a smaller gain in the sense of Euclidean norm, however it may also result in a larger control torque by enhancing the bit-rock interaction.
MSC:
93B52 Feedback control
93C43 Delay control/observation systems
70L05 Random vibrations in mechanics of particles and systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aarsnes, U. J.F.; Aamo, O. M., Linear stability analysis of self-excited vibrations in drilling using an infinite dimensional model, J. Sound Vib., 360, 239-259 (2016)
[2] Besselink, B.; Vromen, T.; Kremers, N.; van de Wouw, N., Analysis and control of stick-slip oscillations in drilling systems, IEEE Trans. Control Syst. Technol., 24, 5, 1582-1593 (2016)
[3] Canudas-de Wit, C.; Olsson, H.; Astrom, K.; Lischinsky, P., A new model for control of systems with friction, IEEE Trans. Autom. Control, 40, 3, 419-425 (1995) · Zbl 0821.93007
[4] Canudas-de Wit, C.; Rubio, F.; Corchero, M., D-OSKIL: a new mechanism for controlling stick-slip oscillations in oil well drillstrings, IEEE Trans. Control Syst. Technol., 16, 6, 1177-1191 (2008)
[5] Chang, W. J.; Qiao, H. Y.; Ku, C. C., Sliding mode fuzzy control for nonlinear stochastic systems subject to pole assignment and variance constraint, Inf. Sci., 432, 133-145 (2018)
[6] Ghasemloonia, A.; Rideout, D. G.; Butt, S. D., A review of drillstring vibration modeling and suppression methods, J. Pet. Sci. Eng., 131, 150-164 (2015)
[7] Gupta, S. K.; Wahi, P., Tuned dynamics stabilizes an idealized regenerative axial-torsional model of rotary drilling, J. Sound Vib., 412, 457-473 (2018)
[8] Ho, D. W.; Lu, G., Robust stabilization for a class of discrete-time non-linear systems via output feedback: the unified LMI approach, Int. J. Control, 76, 2, 105-115 (2003) · Zbl 1026.93048
[9] Kao, Y.; Xie, J.; Zhang, L.; Karimi, H. R., A sliding mode approach to robust stabilisation of markovian jump linear time-delay systems with generally incomplete transition rates, Nonlin. Anal. Hybrid Syst., 17, 70-80 (2015) · Zbl 1326.93111
[10] Karimi, H. R., A sliding mode approach to \(h_∞\) synchronization of master-slave time-delay systems with markovian jumping parameters and nonlinear uncertainties, J. Franklin Inst., 349, 4, 1480-1496 (2012) · Zbl 1254.93046
[11] Lian, Z.; He, Y.; Zhang, C. K.; Wu, M., Further robust stability analysis for uncertain takagi-sugeno fuzzy systems with time-varying delay via relaxed integral inequality, Inf. Sci., 409, 139-150 (2017) · Zbl 1432.93269
[12] Liu, Y., Suppressing stick-slip oscillations in underactuated multibody drill-strings with parametric uncertainties using sliding-mode control, IET Control Theory Appl., 9, 1, 91-102 (2014)
[13] Liu, X.; Yu, X.; Ma, G.; Xi, H., On sliding mode control for networked control systems with semi-markovian switching and random sensor delays, Inf. Sci., 337, 44-58 (2016) · Zbl 1396.93033
[14] Lin, W. J.; He, Y.; Zhang, C. K.; Long, F.; Wu, M., Dissipativity analysis for neural networks with two-delay components using an extended reciprocally convex matrix inequality, Inf. Sci., 450, 169-181 (2018)
[15] Lu, C.; Wu, M.; Chen, X.; Cao, W.; Gan, C.; She, J., Downhole-friction-estimation-based rotary speed control for drillstring system with stick-slip vibrations, The Asian Control Conference, Gold Coast, Australia (2017), IEEE
[17] Monteiro, H. L.; Trindade, M. A., Performance analysis of proportional-integral feedback control for the reduction of stick-slip-induced torsional vibrations in oil well drillstrings, J. Sound Vib., 398, 28-38 (2017)
[18] Nandakumar, K.; Wiercigroch, M., Stability analysis of a state dependent delayed, coupled two DOF model of drill-string vibration, J. Sound Vib., 332, 10, 2575-2592 (2013)
[19] Pathirana, P. N.; Nam, P. T.; Trinh, H., Stability of positive coupled differential-difference equations with unbounded time-varying delays, Automatica, 92, 259-263 (2018) · Zbl 1417.93269
[20] Pavkovic, D.; Deur, J.; Lisac, A., A torque estimator-based control strategy for oil-well drill-string torsional vibrations active damping including an auto-tuning algorithm, Control Eng. Pract., 19, 8, 836-850 (2011)
[21] Richard, T.; Germay, C.; Detournay, E., A simplified model to explore the root cause of stick-slip vibrations in drilling systems with drag bits, J. Sound Vib., 305, 3, 432-456 (2007)
[22] Saldivar, M. B.; Boussaada, I.; Mounier, H.; Niculescu, S. I., Analysis and Control of Oilwell Drilling Vibrations: A Time-Delay Systems Approach (2015), Springer
[23] Seuret, A.; Gouaisbaut, F., Wirtinger-based integral inequality: application to time-delay systems, Automatica, 49, 9, 2860-2866 (2013) · Zbl 1364.93740
[24] Seuret, A.; Gouaisbaut, F., Stability of linear systems with time-varying delays using bessel-legendre inequalities, IEEE Trans. Autom. Control, 63, 1, 225-232 (2018) · Zbl 1390.34213
[25] She, J.; Fang, M.; Ohyama, Y.; Hashimoto, H.; Wu, M., Improving disturbance-rejection performance based on an equivalent-input-disturbance approach, IEEE Trans. Ind. Electron., 55, 1, 380-389 (2008)
[26] Trinh, H.; Huong, D. C., A new method for designing distributed reduced-order functional observers of interconnected time-delay systems, J. Franklin Inst., 355, 3, 1411-1451 (2018) · Zbl 1393.93017
[27] Yigit, A. S.; Christoforou, A. P., Coupled torsional and bending vibrations of actively controlled drillstrings, J. Sound Vib., 234, 1, 67-83 (2000)
[28] Vromen, T.; Dai, C. H.; van de Wouw, N.; Oomen, T.; Astrid, P.; Nijmeijer, H., Robust output-feedback control to eliminate stick-slip oscillations in drill-string systems, IFAC PapersOnLine, 48, 6, 266-271 (2015)
[30] Vromen, T.; van de Wouw, N.; Doris, A.; Astrid, P.; Nijmeijer, H., Nonlinear output-feedback control of torsional vibrations in drilling systems, Int. J. Robust Nonlin. Control, 27, 17, 3659-3684 (2017) · Zbl 1386.93139
[31] Wang, Y.; Shen, H.; Karimi, H. R.; Duan, D., Dissipativity-based fuzzy integral sliding mode control of continuous-time T-S fuzzy systems, IEEE Trans. Fuzzy Syst., 26, 3, 1164-1176 (2018)
[33] Wang, Y.; Xia, Y.; Shen, H.; Zhou, P., SMC design for robust stabilization of nonlinear Markovian jump singular systems, IEEE Trans. Autom. Control, 63, 1, 219-224 (2018) · Zbl 1390.93695
[34] Xiao, B.; Yin, S.; Kaynak, O., Tracking control of robotic manipulators with uncertain kinematics and dynamics, IEEE Trans. Ind. Electron., 63, 10, 6439-6449 (2016)
[35] Xiao, B.; Yin, S.; Gao, H., Reconfigurable tolerant control of uncertain mechanical systems with actuator faults: a sliding mode observer-based approach, IEEE Trans. Control Syst. Technol., 26, 4, 1249-1258 (2018)
[37] Xiao, B.; Dong, Q.; Ye, D.; Liu, L.; Huo, X., A general tracking control framework for uncertain systems with exponential convergence performance, IEEE/ASME Trans. Mechatron., 23, 1, 111-120 (2018)
[38] Yu, P.; Wu, M.; She, J.; Liu, K. Z.; Nakanishi, Y., An improved equivalent-input-disturbance approach for repetitive control system with state delay and disturbance, IEEE Trans. Ind. Electron., 65, 1, 521-531 (2018)
[39] Xiao, S. P.; Lian, H.; Zeng, H.; Chen, G.; Zheng, W., Analysis on robust passivity of uncertain neural networks with time-varying delays via free-matrix-based integral inequality, Int. J. Control Autom. Syst., 15, 5, 2385-2394 (2017)
[40] Zhang, B. L.; Han, Q. L.; Zhang, X. M.; Yu, X., Sliding mode control with mixed current and delayed states for offshore steel jacket platforms, IEEE Trans. Control Syst. Technol., 22, 5, 1769-1783 (2014)
[41] Zhang, B. L.; Han, Q. L.; Zhang, X. M., Event-triggered \(h_∞\) reliable control for offshore structures in network environments, J. Sound Vib., 368, 1-21 (2016)
[42] Zhang, B. L.; Han, Q. L.; Zhang, X. M., Recent advances in vibration control of offshore platforms, Nonlinear Dyn., 89, 2, 755-771 (2017)
[43] Zhang, C. K.; He, Y.; Jiang, L.; Wu, M., Stability analysis for delayed neural networks considering both conservativeness and complexity, IEEE Trans. Neural Netw. Learn. Syst., 27, 7, 1486-1501 (2016)
[44] Zhang, X. M.; Han, Q. L., Event-triggered \(h_∞\) control for a class of nonlinear networked control systems using novel integral inequalities, Int. J. Robust Nonlinear Control, 27, 4, 679-700 (2017) · Zbl 1356.93058
[45] Zhang, X. M.; Han, Q. L., Network-based \(h_∞\) filtering using a logic jumping-like trigger, Automatica, 49, 5, 1428-1435 (2013) · Zbl 1319.93076
[46] Zhang, X. M.; Han, Q. L., Abel lemma-based finite-sum inequality and its application to stability analysis for linear discrete time-delay systems, Automatica, 57, 199-202 (2015) · Zbl 1330.93213
[47] Zhang, X. M.; Han, Q. L.; Seuret, A.; Gouaisbaut, F., An improved reciprocally convex inequality and an augmented Lyapunov-Krasovskii functional for stability of linear systems with time-varying delay, Automatica, 84, 221-226 (2017) · Zbl 1375.93114
[48] Zhang, X. M.; Han, Q. L.; Zeng, Z., Hierarchical type stability criteria for delayed neural networks via canonical bessel-legendre inequalities, IEEE Trans. Cybern., 48, 5, 1660-1671 (2018)
[49] Zuo, Z.; Han, Q. L.; Ning, B.; Ge, X.; Zhang, X. M., An overview of recent advances in fixed-time cooperative control of multi-agent systems, IEEE Trans. Ind. Inform., 14, 6, 2322-2334 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.