×

zbMATH — the first resource for mathematics

Improved doubly robust estimation when data are monotonely coarsened, with application to longitudinal studies with dropout. (English) Zbl 1217.62146
Summary: A routine challenge is that of making inference on parameters in a statistical model of interest from longitudinal data subject to dropout, which are a special case of the more general setting of monotonely coarsened data. Considerable recent attention has focused on doubly robust (DR) estimators, which in this context involve positing models for both the missingness (more generally, coarsening) mechanism and aspects of the distribution of the full data, that have the appealing property of yielding consistent inferences if only one of these models is correctly specified. DR estimators have been criticized for potentially disastrous performance when both of these models are even only mildly misspecified. We propose a DR estimator applicable in general monotone coarsening problems that achieves comparable or improved performance relative to existing DR methods, which we demonstrate via simulation studies and by application to data from an AIDS clinical trial.

MSC:
62N02 Estimation in survival analysis and censored data
62P10 Applications of statistics to biology and medical sciences; meta analysis
62G35 Nonparametric robustness
65C60 Computational problems in statistics (MSC2010)
Software:
SAS; SAS/STAT
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bang, Doubly robust estimation in missing data and causal inference models, Biometrics 61 pp 962– (2005) · Zbl 1087.62121 · doi:10.1111/j.1541-0420.2005.00377.x
[2] Birmingham, Pattern-mixture and selection models for analysing longitudinal data with monotone missing patterns, Journal of the Royal Statistical Society, Series B 65 pp 275– (2003) · Zbl 1063.62039 · doi:10.1111/1467-9868.00386
[3] Cao, Improving efficiency and robustness of the doubly robust estimator for a population mean with incomplete data, Biometrika 96 pp 723– (2009) · Zbl 1170.62007 · doi:10.1093/biomet/asp033
[4] Gill, Proceedings of The First Seattle Symposium in Biostatistics: Survival Analysis pp 255– (1997) · doi:10.1007/978-1-4684-6316-3_14
[5] Goetgeluk, Estimation of controlled direct effects, Journal of the Royal Statistical Society, Series B 70 pp 1049– (2009) · doi:10.1111/j.1467-9868.2008.00673.x
[6] Hammer, A trial comparing nucleoside monotherapy with combination therapy in HIV infected adults with CD4 cell counts from 200 to 500 per cubic millimeter, New England Journal of Medicine 335 pp 1081– (1996) · doi:10.1056/NEJM199610103351501
[7] Heitjan, Ignorability and coarse data, The Annals of Statistics 19 pp 2244– (1991) · Zbl 0745.62004 · doi:10.1214/aos/1176348396
[8] Hogan, Handling drop-out in longitudinal studies, Statistics in Medicine 23 pp 1455– (2004) · doi:10.1002/sim.1728
[9] Kang, Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data (with discussion and rejoinder), Statistical Science 22 pp 523– (2007) · Zbl 1246.62073 · doi:10.1214/07-STS227
[10] Little, Longitudinal Data Analysis pp 409– (2009)
[11] Molenberghs, Longitudinal Data Analysis pp 395– (2009)
[12] Philipson, Comparative review of methods for handling drop-out in longitudinal studies, Statistics in Medicine 27 pp 6276– (2008) · doi:10.1002/sim.3450
[13] Robins, Estimation of regression coefficients when some regressors are not always observed, Journal of the American Statistical Association 89 pp 846– (1994) · Zbl 0815.62043 · doi:10.2307/2290910
[14] Robins, Analysis of semiparametric regression models for repeated outcomes in the presence of missing data, Journal of the American Statistical Association 90 pp 106– (1995) · Zbl 0818.62042 · doi:10.2307/2291134
[15] Rotnitzky, Longitudinal Data Analysis pp 453– (2009)
[16] Rotnitzky, Semiparametric regression for repeated outcomes with nonignorable nonresponse, Journal of the American Statistical Association 93 pp 1321– (1998) · Zbl 1064.62520 · doi:10.2307/2670049
[17] SAS Institute, SAS/STAT 9.2 User’s Guide (2009)
[18] Scharfstein, Adjusting for nonignorable drop-out using semiparametric nonresponse models (with discussion and rejoinder), Journal of the American Statistical Association 94 pp 1096– (1999) · Zbl 1072.62644 · doi:10.2307/2669923
[19] Seaman, Doubly robust generalized estimating equations for longitudinal data, Statistics in Medicine 28 pp 937– (2009) · doi:10.1002/sim.3520
[20] Stefanski, The calculus of M-estimation, The American Statistician 56 pp 29– (2002) · doi:10.1198/000313002753631330
[21] Tan, A distributional approach for causal inference using propensity scores, Journal of the American Statistical Association 101 pp 1619– (2006) · Zbl 1171.62320 · doi:10.1198/016214506000000023
[22] Tan, Understanding OR, PS and DR, Statistical Science 22 pp 560– (2007) · Zbl 1246.62077 · doi:10.1214/07-STS227A
[23] Tan, The International Journal of Biostatistics 4 (Issue 1) (2008)
[24] Tsiatis, Semiparametric Theory and Missing Data (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.