×

zbMATH — the first resource for mathematics

Disturbance rejection via feedforward compensation using an enhanced equivalent-input-disturbance approach. (English) Zbl 1450.93011
Summary: This paper presents an enhanced equivalent-input-disturbance (EID) approach that provides an additional degree of freedom to reject an exogenous disturbance for a control system. The EID approach uses a state observer and an estimator to calculate an equivalent disturbance on the control input channel for feedforward compensation. However, there is a constraint on the design of the state observer in an EID-based control system. This imposes a limitation on control performance. A high-gain observer (HGO) is employed to remove the constraint. This increases the flexibility of system design and improves disturbance-rejection performance. The convergence of the HGO is analyzed and the system is separated into two subsystems for stability analysis and design. A numerical example is used to show the validity of the method. The simulation results show that the disturbance is mainly rejected by feedforward compensation rather than feedback control.
MSC:
93B35 Sensitivity (robustness)
93B53 Observers
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Gao, Z., On the centrality of disturbance rejection in automatic control, ISA Trans., 53, 4, 850-857 (2014)
[2] Chen, X.; Zhao, H.; Sun, H.; Zhen, S.; Huang, K., A novel adaptive robust control approach for underactuated mobile robot, J. Frankl. Inst., 356, 5, 2474-2490 (2019) · Zbl 1411.93099
[3] Skoczowski, S.; Domek, S.; Pietrusewicz, K.; Broel-Plater, B., A method for improving the robustness of PID control, IEEE Trans. Ind. Electron., 52, 6, 1669-1676 (2005)
[4] Ruderman, M.; Ruderman, A.; Bertram, T., Observer-based compensation of additive periodic torque disturbances in permanent magnet motors, IEEE Trans. Ind. Inf., 9, 2, 1130-1138 (2013)
[5] Santos, T. L.M.; Franklin, T. S., Enhanced finite spectrum assignment with disturbance compensation for LTI systems with input delay, J. Frankl. Inst., 355, 8, 3541-3566 (2018) · Zbl 1390.93339
[6] Bao, Y.; Wang, L. Y.; Wang, C.; Jiang, J.; Jiang, C.; Duan, C., Adaptive feedforward compensation for voltage source disturbance rejection in DC-DC converters, IEEE Trans. Control Syst. Technol., 26, 1, 344-351 (2018)
[7] Chen, W. H.; Yang, J.; Guo, L.; Li, S., Disturbance-observer-based control and related methods- an overview, IEEE Trans. Ind. Electron., 63, 2, 1083-1095 (2016)
[8] Sariyildiz, E.; Oboe, R.; Ohnishi, K., Disturbance observer-based robust control and its applications: 35th anniversary overview, IEEE Trans. Ind. Electron., 67, 3, 2042-2053 (2020)
[9] Yang, G.; Yao, J., Output feedback control of electro-hydraulic servo actuators with matched and mismatched disturbances rejection, J. Frankl. Inst., 356, 16, 9152-9179 (2019) · Zbl 1423.93132
[10] Chen, X. S.; Yang, J.; Li, S. H.; Li, Q., Disturbance observer based multi-variable control of ball mill grinding circuits, J. Process Control, 19, 7, 1205-1213 (2009)
[11] Rubio, J. J., Structure control for the disturbance rejection in two electromechanical processes, J. Frankl. Inst., 353, 14, 3610-3631 (2016) · Zbl 1347.93115
[12] An, H.; Liu, J.; Wang, C.; Wu, L., Disturbance observer-based antiwindup control for air-breathing hypersonic vehicles, IEEE Trans. Ind. Electron., 63, 5, 3038-3049 (2016)
[13] Sanz, R.; Garcia, P.; Zhong, Q. C.; Albertos, P., Predictor-based control of a class of time-delay systems and its application to quadrotors, IEEE Trans. Ind. Electron., 64, 1, 459-469 (2017)
[14] Amin, R. U.; Inayat, I.; Ai Jun, L., Finite time position and heading tracking control of coaxial octorotor based on extended inverse multi-quadratic radial basis function network and external disturbance observer, J. Frankl. Inst., 356, 8, 4240-4269 (2019) · Zbl 1412.93018
[15] Tokyo, Japan
[16] Chen, W. H.; Ballance, D. J.; Gawthrop, P. J.; O’Reilly, J., A nonlinear disturbance observer for robotic manipulators, IEEE Trans. Ind. Electron., 47, 4, 932-938 (2000)
[17] Chen, W.-H., Disturbance observer based control for nonlinear systems, IEEE/ASME Trans. Mechatron., 9, 4, 706-710 (2004)
[18] Li, S.; Yang, J.; Chen, W.-H.; Chen, X., Disturbance Observer-Based Control: Methods and Applications (2014), CRC Press: CRC Press Boca Raton, FL
[19] Zhang, L.; Wei, X.; Zhang, H., Disturbance observer-based elegant anti-disturbance control for stochastic systems with multiple disturbances, Asian J. Control, 20, 1, 1-11 (2018)
[20] Wei, X.-J.; Wu, Z.-J.; Karimi, H. R., Disturbance observer-based disturbance attenuation control for a class of stochastic systems, Automatica, 63, 21-25 (2016) · Zbl 1329.93129
[21] Kim, K.; Rew, K.; Kim, S., Disturbance observer for estimating higher order disturbances in time series expansion, IEEE Trans. Autom. Control, 55, 8, 1905-1911 (2010) · Zbl 1368.93123
[22] Yang, J.; Chen, W.-H.; Li, S., Non-linear disturbance observer-based robust control for systems with mismatched disturbances/uncertainties, IET Control Theory Appl., 5, 18, 2053-2062 (2011)
[23] Wei, X. J.; Guo, L., Composite disturbance-observer-based control and H_∞ control for complex continuous models, Int. J. Robust Nonlinear Control, 20, 1, 106-118 (2010) · Zbl 1191.93014
[24] Guo, L.; Wen, X.-Y., Hierarchical anti-disturbance adaptive control for non-linear systems with composite disturbances and applications to missile systems, Trans. Inst. Meas. Control, 33, 8, 942-956 (2010)
[25] Zhang, H.; Wei, X.; Karimi, H. R.; Han, J., Anti-disturbance control based on disturbance observer for nonlinear systems with bounded disturbances, J. Frankl. Inst., 355, 12, 4916-4930 (2018) · Zbl 1395.93264
[26] Han, J., From PID to active disturbance rejection control, IEEE Trans. Ind. Electron., 56, 3, 900-906 (2009)
[27] Ma, X.; Guo, Y.; Chen, L., Active disturbance rejection control for electric power steering system with assist motor variable mode, J. Frankl. Inst., 355, 3, 1139-1155 (2018) · Zbl 1393.93037
[28] Zhou, R.; Tan, W., Analysis and tuning of general linear active disturbance rejection controllers, IEEE Trans. Ind. Electron., 66, 7, 5497-5507 (2019)
[29] Huang, Y.; Xue, W., Active disturbance rejection control: methodology and theoretical analysis, ISA Trans., 53, 4, 963-976 (2014)
[30] Madonski, R.; Herman, P., Survey on methods of increasing the efficiency of extended state disturbance observers, ISA Trans., 56, 18-27 (2015)
[31] She, J.; Xin, X.; Ohyama, Y., Estimation of equivalent input disturbance improves vehicular steering control, IEEE Trans. Veh. Technol., 56, 6, 3722-3731 (2007)
[32] She, J. H.; Fang, M.; Ohyama, Y.; Hashimoto, H.; Wu, M., Improving disturbance-rejection performance based on an equivalent-input-disturbance approach, IEEE Trans. Ind. Electron., 55, 1, 380-389 (2008)
[33] Hunt, L. R.; Meyer, G.; Su, R., Noncausal inverses for linear systems, IEEE Trans. Autom. Control, 41, 4, 608-611 (1996) · Zbl 0864.93055
[34] She, J. H.; Xin, X.; Pan, Y., Equivalent-input-disturbance approach-analysis and application to disturbance rejection in dual-stage feed drive control system, IEEE/ASME Trans. Mechatron., 16, 2, 330-340 (2011)
[35] Liu, R. J.; Wu, M.; Liu, G. P.; She, J.; Thomas, C., Active disturbance rejection control based on an improved equivalent-input-disturbance approach, IEEE/ASME Trans. Mechatron., 18, 4, 1410-1413 (2013)
[36] Liu, R. J.; Liu, G. P.; Wu, M.; She, J.; Nie, Z. Y., Robust disturbance rejection in modified repetitive control system, Syst. Control Lett., 70, 8, 100-108 (2014) · Zbl 1290.93055
[37] Gao, F.; Wu, M.; She, J.; Cao, W., Disturbance rejection in nonlinear systems based on equivalent-input-disturbance approach, Appl. Math. Comput., 282, 5, 244-253 (2016) · Zbl 1410.93080
[38] Liu, R.; She, J.; Wu, M.; Zhu, F.; Nie, Z., Robust disturbance rejection for a fractional-order system based on equivalent-input-disturbance approach, Sci. China Inf. Sci., 61, 7, 200-211 (2018)
[39] Du, Y.; Cao, W.; She, J.; Wu, M.; Fang, M.; Kawata, S., Disturbance rejection for input-delay system using observer-predictor-based output feedback control, IEEE Trans. Ind. Inf., 16, 7, 4489-4497 (2020)
[40] Du, Y.; Cao, W.; Wu, M.; She, J.; Fang, M.; Kawata, S., Disturbance rejection and control system design using improved equivalent-input-disturbance approach, IEEE Trans. Ind. Electron., 67, 4, 3013-3023 (2020)
[41] Ho, D. W.C.; Lu, G., Robust stabilization for a class of discrete-time non-linear systems via output feedback: The unified LMI approach, Int. J. Control, 76, 2, 105-115 (2003) · Zbl 1026.93048
[42] Wu, M.; Gao, F.; Yu, P.; She, J.; Cao, W., Improve disturbance-rejection performance for an equivalent-input-disturbance-based control system by incorporating a proportional-integral observer, IEEE Trans. Ind. Electron., 67, 2, 1254-1260 (2020)
[43] Li, S.; Yang, J.; Chen, W. H.; Chen, X., Generalized extended state observer based control for systems with mismatched uncertainties, IEEE Trans. Ind. Electron., 59, 12, 4792-4802 (2012)
[44] Castillo, A.; Garcła, P.; Sanz, R.; Albertos, P., Enhanced extended state observer-based control for systems with mismatched uncertainties and disturbances, ISA Trans., 73, 1-10 (2018)
[45] Zhao, Z.-L.; Guo, B.-Z., A nonlinear extended state observer based on fractional power functions, Automatica, 81, 286-296 (2017) · Zbl 1372.93048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.