×

The time-delayed inverted pendulum: implications for human balance control. (English) Zbl 1309.92020

Summary: The inverted pendulum is frequently used as a starting point for discussions of how human balance is maintained during standing and locomotion. Here we examine three experimental paradigms of time-delayed balance control: (1) mechanical inverted time-delayed pendulum, (2) stick balancing at the fingertip, and (3) human postural sway during quiet standing. Measurements of the transfer function (mechanical stick balancing) and the two-point correlation function (Hurst exponent) for the movements of the fingertip (real stick balancing) and the fluctuations in the center of pressure (postural sway) demonstrate that the upright fixed point is unstable in all three paradigms. These observations imply that the balanced state represents a more complex and bounded time-dependent state than a fixed-point attractor. Although mathematical models indicate that a sufficient condition for instability is for the time delay to make a corrective movement, \(\tau_n\), be greater than a critical delay \(\tau_c\) that is proportional to the length of the pendulum, this condition is satisfied only in the case of human stick balancing at the fingertip. Thus it is suggested that a common cause of instability in all three paradigms stems from the difficulty of controlling both the angle of the inverted pendulum and the position of the controller simultaneously using time-delayed feedback. Considerations of the problematic nature of control in the presence of delay and random perturbations (“noise”) suggest that neural control for the upright position likely resembles an adaptive-type controller in which the displacement angle is allowed to drift for small displacements with active corrections made only when \(\theta\) exceeds a threshold. This mechanism draws attention to an overlooked type of passive control that arises from the interplay between retarded variables and noise.{
©2009 American Institute of Physics}

MSC:

92C10 Biomechanics
70Q05 Control of mechanical systems
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Lord S. R., Falls in Older People: Risk Factors and Strategies for Prevention (2001)
[2] Morris K., An Introduction to Feedback Controller Design (2001)
[3] DOI: 10.1109/TRO.2004.840905 · doi:10.1109/TRO.2004.840905
[4] Flügge-Lotz I., Discontinuous and Optimal Control (1968) · Zbl 0242.49001
[5] DOI: 10.1177/1077546307074245 · Zbl 1182.74122 · doi:10.1177/1077546307074245
[6] G. Stépán, Retarded Dynamical Systems: Stability and Characteristic Functions, Pitman Research Notes in Mathematics Series Vol. 210 (Wiley, New York, 1989), pp. 118–129.
[7] Enikov E., Period. Polytech., Mech. Eng.-Masinostr. 38 pp 19– (1994)
[8] DOI: 10.1007/BF02440161 · Zbl 0863.93050 · doi:10.1007/BF02440161
[9] DOI: 10.1016/S0893-9659(99)00056-7 · Zbl 0938.93588 · doi:10.1016/S0893-9659(99)00056-7
[10] Kollár L., Period. Polytech., Mech. Eng.-Masinostr. 44 pp 77– (2000)
[11] DOI: 10.1016/S0895-7177(00)00039-X · Zbl 1042.70515 · doi:10.1016/S0895-7177(00)00039-X
[12] DOI: 10.1137/030600461 · Zbl 1170.93366 · doi:10.1137/030600461
[13] DOI: 10.1115/DETC2007-34735 · doi:10.1115/DETC2007-34735
[14] DOI: 10.1115/DETC2007-34904 · doi:10.1115/DETC2007-34904
[15] DOI: 10.1115/1.2957631 · doi:10.1115/1.2957631
[16] DOI: 10.1207/s15326969eco1102_1 · doi:10.1207/s15326969eco1102_1
[17] DOI: 10.1037/0096-1523.26.4.1281 · doi:10.1037/0096-1523.26.4.1281
[18] Mehta B., J. Neurophysiol. 88 pp 942– (2002)
[19] DOI: 10.1103/PhysRevLett.89.158702 · doi:10.1103/PhysRevLett.89.158702
[20] DOI: 10.1063/1.1785453 · Zbl 1080.92016 · doi:10.1063/1.1785453
[21] Cabrera J. L., Nonlinear Stud. 11 pp 305– (2004)
[22] DOI: 10.1142/S0219477504001719 · doi:10.1142/S0219477504001719
[23] DOI: 10.1016/j.neucom.2004.01.089 · Zbl 02223662 · doi:10.1016/j.neucom.2004.01.089
[24] DOI: 10.5488/CMP.9.2.373 · doi:10.5488/CMP.9.2.373
[25] DOI: 10.1007/BF00229788 · doi:10.1007/BF00229788
[26] DOI: 10.1103/PhysRevLett.73.764 · doi:10.1103/PhysRevLett.73.764
[27] DOI: 10.1103/PhysRevE.52.3277 · doi:10.1103/PhysRevE.52.3277
[28] DOI: 10.1103/PhysRevE.54.6681 · doi:10.1103/PhysRevE.54.6681
[29] Winter D. A., J. Neurophysiol. 80 pp 1211– (1998)
[30] Winter D. A., Biomechanics and Motor Control of Human Movement (2005)
[31] DOI: 10.1098/rsta.2008.0257 · Zbl 1185.34119 · doi:10.1098/rsta.2008.0257
[32] DOI: 10.1016/j.arcontrol.2006.08.002 · doi:10.1016/j.arcontrol.2006.08.002
[33] DOI: 10.1109/TCST.2006.876938 · doi:10.1109/TCST.2006.876938
[34] DOI: 10.1209/0295-5075/83/48001 · doi:10.1209/0295-5075/83/48001
[35] DOI: 10.1016/j.physa.2005.05.007 · doi:10.1016/j.physa.2005.05.007
[36] DOI: 10.1088/0253-6102/50/3/29 · Zbl 1392.60051 · doi:10.1088/0253-6102/50/3/29
[37] DOI: 10.1007/978-0-387-85595-0_11 · doi:10.1007/978-0-387-85595-0_11
[38] Chen K. F., Lat. Am. J. Phys. Educ. 2 pp 197– (2008)
[39] DOI: 10.1177/027836499000900206 · Zbl 05422368 · doi:10.1177/027836499000900206
[40] DOI: 10.1115/1.3005107 · doi:10.1115/1.3005107
[41] DOI: 10.1103/PhysRevLett.80.3658 · doi:10.1103/PhysRevLett.80.3658
[42] DOI: 10.1098/rstb.2003.1338 · doi:10.1098/rstb.2003.1338
[43] DOI: 10.1113/jphysiol.1976.sp011613 · doi:10.1113/jphysiol.1976.sp011613
[44] DOI: 10.1016/j.humov.2007.04.003 · doi:10.1016/j.humov.2007.04.003
[45] DOI: 10.1007/BF00250604 · doi:10.1007/BF00250604
[46] DOI: 10.1113/jphysiol.1996.sp021332 · doi:10.1113/jphysiol.1996.sp021332
[47] DOI: 10.1016/S0966-6362(02)00200-X · doi:10.1016/S0966-6362(02)00200-X
[48] DOI: 10.1113/jphysiol.2001.013077 · doi:10.1113/jphysiol.2001.013077
[49] DOI: 10.1113/jphysiol.2004.076307 · doi:10.1113/jphysiol.2004.076307
[50] DOI: 10.1007/BF02218819 · Zbl 0816.34048 · doi:10.1007/BF02218819
[51] DOI: 10.1016/0167-9457(95)00032-1 · doi:10.1016/0167-9457(95)00032-1
[52] DOI: 10.1007/BF02454152 · doi:10.1007/BF02454152
[53] DOI: 10.1016/j.humov.2007.11.005 · doi:10.1016/j.humov.2007.11.005
[54] Reimann B. L., Med. Sci. Sports Exercise 36 pp 338– (2004)
[55] Morasso P. G., J. Neurophysiol. 82 pp 1622– (1999)
[56] DOI: 10.1111/j.1469-7793.2001.0879e.x · doi:10.1111/j.1469-7793.2001.0879e.x
[57] DOI: 10.1109/TAC.1979.1102024 · Zbl 0399.93023 · doi:10.1109/TAC.1979.1102024
[58] Peterka R. J., J. Neurophysiol. 88 pp 1097– (2001)
[59] Schwartzenbach J., System Modelling and Control, 3. ed. (1992)
[60] Eurich C. W., Springer Lecture Notes in Computer Science 3697, in: Artificial Neural Networks: Formal Models and Their Applications pp 365– (2005)
[61] DOI: 10.1007/BF00231982 · doi:10.1007/BF00231982
[62] DOI: 10.1016/S0896-6273(03)00460-4 · doi:10.1016/S0896-6273(03)00460-4
[63] DOI: 10.1109/IJCNN.2001.939017 · doi:10.1109/IJCNN.2001.939017
[64] DOI: 10.1109/TNN.2005.860867 · doi:10.1109/TNN.2005.860867
[65] DOI: 10.1016/0021-9290(85)90042-9 · doi:10.1016/0021-9290(85)90042-9
[66] DOI: 10.1016/0021-9290(94)90043-4 · doi:10.1016/0021-9290(94)90043-4
[67] DOI: 10.1177/02783649922066655 · Zbl 05422235 · doi:10.1177/02783649922066655
[68] DOI: 10.1103/PhysRevLett.89.238101 · doi:10.1103/PhysRevLett.89.238101
[69] DOI: 10.1038/nn1986 · doi:10.1038/nn1986
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.