Trace formulas for multichannel problems. (English) Zbl 0349.47021


47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
Full Text: DOI


[1] K. O. Friedrichs, ?On the perturbation of continuous spectra,? Commun. Pure Appl. Math.,1, 361?406 (1948). · Zbl 0031.31204
[2] O. A. Ladyzhenskaya and L. D. Faddeev, ?Theory of perturbations of a continuous spectrum,? Dokl. Akad. Nauk SSSR,120, 1187?1190 (1958). · Zbl 0088.09101
[3] L. D. Faddeev, ?On the Friedrichs model in the theory of perturbations of a continuous spectrum,? Trudy Matem. Inst. Akad. Nauk SSSR,73 (1964).
[4] V. S. Buslaev, ?Spectral identities and a trace formula in the Friedrichs model,? in: Problems of Mathematical Physics [in Russian], No. 4, Izd. LGU, Leningrad (1970).
[5] V. S. Buslaev and S. P. Merkur’ev, ?Relationship between the third virial coefficient and the scattering matrix,? Teor. Mat. Fiz.,5, 372?387 (1970).
[6] K. O. Friedrichs, Perturbation of Spectra in Hilbert Space, AMS Lectures in Applied Mathematics, Vol. 3, Amer. Math. Soc., Providence, R. I. (1965). · Zbl 0142.11001
[7] L. D. Faddeev, ?Mathematical aspects of quantum scattering theory for a three-particle system,? Trudy Matem. Inst. Akad. Nauk SSSR,69 (1963).
[8] École Normale Supérieure, Séminaire ?Sophus Lie? 1954/1955, Secretariat Mathématique, Paris (1955).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.