×

zbMATH — the first resource for mathematics

Synthesis of evidence from epidemiological studies with interval-censored exposure due to grouping. (English) Zbl 1209.62273
Summary: We describe a method for assessing dose – response effects from a series of case – control and cohort studies in which the exposure information is interval censored. The interval censoring of the exposure variable is dealt with through the use of retrospective models in which the exposure is treated as a multinomial response and disease status as a binary covariate. Polychotomous logistic regression models are adopted in which the dose-response relationship between exposure and disease may be modeled in a discrete or continuous fashion. Partial conditioning is possible to eliminate some of the nuisance parameters. The methods are applied to the motivating study of the relationship between chorionic villus sampling and the occurrence of terminal transverse limb reduction.
MSC:
62P10 Applications of statistics to biology and medical sciences; meta analysis
62N01 Censored data models
62H12 Estimation in multivariate analysis
92C50 Medical applications (general)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ammala, Randomized trial comparing first-trimester transcervical chorionic villus sampling and second-trimester amniocentesis, Prenatal Diagnosis 13 pp 919– (1993) · doi:10.1002/pd.1970131006
[2] Austin, Esimating a relative risk across sparse case-control and follow-up studies: A method for meta-analysis, Statistics in Medicine 16 pp 1005– (1997) · doi:10.1002/(SICI)1097-0258(19970515)16:9<1005::AID-SIM520>3.0.CO;2-N
[3] Berlin, Meta-analysis of epidemiologic dose-response data, Epidemiology 4 pp 218– (1993) · doi:10.1097/00001648-199305000-00005
[4] Bissonnette, Factors associated with limb anomalies after chorionic villus sampling, Prenatal Diagnosis 13 pp 1163– (1993) · doi:10.1002/pd.1970131218
[5] Brambati, Genetic diagnosis by chorionic villus sampling before 8 gestational weeks: Efficiency, reliability, and risks on 317 completed pregnancies, Prenatal Diagnosis 12 pp 789– (1992) · doi:10.1002/pd.1970121004
[6] Brumback, Adverse effects of chorionic villus sampling: A meta-analysis, Statistics in Medicine 18 pp 2163– (1999) · doi:10.1002/(SICI)1097-0258(19990830)18:16<2163::AID-SIM180>3.0.CO;2-H
[7] Brumback, Meta-analysis of case-control and cohort studies with interval-censored exposure data: Application to chorionic villus sampling, Biostatistics 1 pp 203– (2000) · Zbl 0959.62102 · doi:10.1093/biostatistics/1.2.203
[8] Burton, Limb anomalies associated with chorionic villus sampling, Obstetrics and Gynecology 79 pp 726– (1992)
[9] Cooper, The Handbook of Research Synthesis (1994)
[10] Cornfield, A method of estimating comparative rates from clinical data. Applications to cancer of the lung, breast and cervix, Journal of the National Cancer Institute 11 pp 1269– (1951)
[11] Cox, The Analysis of Binary Data (1989) · Zbl 0729.62004
[12] Dolk, Chorionic villus sampling and limb abnormalities, The Lancet 339 pp 876– (1992) · doi:10.1016/0140-6736(92)90325-W
[13] Donner, Experience with 1251 transcervical chorionic vaillus samplings performed in the first trimester by a single team of operators, Obstetrics and Gynecology 60 pp 45– (1995)
[14] Dumouchel, Meta-analysis for dose-response models, Statistics in Medicine 14 pp 570– (1995) · doi:10.1002/sim.4780140524
[15] Firth, Severe limb abnormalities after chorionic villus sampling at 56-66 days gestation, Lancet 337 pp 762– (1991) · doi:10.1016/0140-6736(91)91374-4
[16] Froster-Iskenius, Limb reduction defects in over one million consecutive livebirths, Teratology 39 pp 127– (1989) · doi:10.1002/tera.1420390205
[17] Ghirardini, Exocoelomic space, limb reduction, and CVS, The Lancet 338 pp 695– (1991) · doi:10.1016/0140-6736(91)91271-U
[18] Greenland, Can meta-analysis be salvaged, American Journal of Epidemiology 140 pp 783– (1994a)
[19] Greenland, Invited commentary: A critical look at some popular meta-analytic methods, American Journal of Epidemiology 140 pp 290– (1994b)
[20] Greenland, Methods for trend estimation from summarized dose-response data, with applications to meta-analysis, American Journal of Epidemiology 135 pp 1301– (1992)
[21] Halliday, Limb deficiencies, chorion villus sampling, and advanced maternal age, American Journal of Medical Genetics 47 pp 1096– (1993) · doi:10.1002/ajmg.1320470733
[22] Heitjan, Ignorability and coarse data, Annals of Statistics 19 pp 2244– (1991) · Zbl 0745.62004 · doi:10.1214/aos/1176348396
[23] Hogge, Chorionic villus sampling: The University of Maryland experience, Maryland Medical Journal 41 pp 523– (1992)
[24] Hsieh, Limb defects after chorionic villus sampling, Obstetrics and Gynecology 85 pp 84– (1995) · doi:10.1016/0029-7844(94)00332-8
[25] Jahoda, Terminal transverse limb defects and early chorionic villus sampling: Evaluation of 4,300 cases with completed follow-up, American Journal of Medical Genetics 46 pp 483– (1993) · doi:10.1002/ajmg.1320460503
[26] Lau, Quantitative synthesis in systematic reviews, Annals of Internal Medicine 127 pp 820– (1997) · doi:10.7326/0003-4819-127-9-199711010-00008
[27] Canadian multi-centre randomized clinical trial of chorion villus sampling and amniocentesis, Prenatal Diagnosis 12 pp 385– (1992) · doi:10.1002/pd.1970120508
[28] Lunshof, Pregnancy outcome after transcervical CVS with a flexible biopsy forceps: Evaluation of risk factors, Prenatal Diagnosis 15 pp 809– (1995) · doi:10.1002/pd.1970150904
[29] Mahoney, Limb abnormalities and chorionic villus sampling, The Lancet 337 pp 1422– (1991) · doi:10.1016/0140-6736(91)93117-R
[30] Mastroiacovo, Transverse limb reduction defects after chorionic villus sampling: A retrospective cohort study, Prenatal Diagnosis 13 pp 1051– (1993) · doi:10.1002/pd.1970131109
[31] Meinert, Meta-analysis of studies on the association between electromagnetic fields and childhood cancer, Radiation and Environmental Biophysics 35 pp 11– (1996) · doi:10.1007/BF01211237
[32] Monni, Transabdominal chorionic villus sampling: Fetal loss rate in relation to maternal and gestational age, Prenatal Diagnosis 12 pp 815– (1992) · doi:10.1002/pd.1970121007
[33] Nicolaides, Comparison of chorionic villus sampling and amniocentesis for fetal karyotyping at 10-13 weeks’ gestation, The Lancet 344 pp 435– (1994) · doi:10.1016/S0140-6736(94)91769-8
[34] Olkin, Meta-analysis: Current issues in research synthesis, Statistics in Medicine 15 pp 1253– (1996) · doi:10.1002/(SICI)1097-0258(19960630)15:12<1253::AID-SIM303>3.0.CO;2-R
[35] Olney, Increased risk for transverse digital deficiency after chorionic villus sampling: Results of the United States multi-state case-control study, 1988-1992, Teratology 51 pp 20– (1995) · doi:10.1002/tera.1420510104
[36] Palo, Transabdominal chorionic villus sampling and amniocentesis for prenatal diagnosis: 5 years’ experience at a university centre, Prenatal Diagnosis 14 pp 157– (1994) · doi:10.1002/pd.1970140302
[37] Petitti, Of babies and bathwater, American Journal of Epidemiology 140 pp 779– (1994)
[38] Schloo, Distal limb deficiency following chorionic villus sampling, American Journal of Medical Genetics 42 pp 404– (1992) · doi:10.1002/ajmg.1320420338
[39] Shapiro, Meta-analysis/shmeta-analysis, American Journal of Epidemiology 140 pp 771– (1994)
[40] Silver, Congenital malformations subsequent to chorionic villus sampling: Outcome analysis of 1048 consecutive procedures, Prenatal Diagnosis 14 pp 421– (1994) · doi:10.1002/pd.1970140602
[41] Smidt-Jensen, Randomised comparison of amniocentesis and transabdominal and transcervical chorionic villus sampling, The Lancet 340 pp 1237– (1992) · doi:10.1016/0140-6736(92)92946-D
[42] Smith, On combining dose-response data from epidemiological studies by meta-analysis, Statistics in Medicine 14 pp 531– (1995) · doi:10.1002/sim.4780140513
[43] Suzumori, Comparison of chorionic villus sampling and amniocentesis: Current status of prenatal diagnosis in Japan, Prenatal Diagnosis 14 pp 479– (1994) · doi:10.1002/pd.1970140612
[44] Tweedie, Meta-analytic approaches to dose-response relationships, with application in studies of lung cancer and exposure to environmental tobacco smoke, Statistics in Medicine 14 pp 545– (1995) · doi:10.1002/sim.4780140514
[45] Wartenberg, Residential magnetic fields and childhood leukemia: A meta-analysis, American Journal of Public Health 88 pp 1787– (1998) · doi:10.2105/AJPH.88.12.1787
[46] Williams, Chorionic villus sampling: Experience with 3016 cases performed by a single operator, Obstetrics and Gynecology 80 pp 1023– (1992)
[47] Wirth, Prenatal prediction in families with autosomal recessive proximal spinal muscular atrophy (5q11.2-q13.3): Molecular genetics and clinical experience in 109 cases, Prenatal Diagnosis 15 pp 407– (1995) · doi:10.1002/pd.1970150503
[48] Woolson, Statistical Methods for the Analysis of Biomedical Data (1987)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.