Brandl, Rolf R. A.; Brookes, Christopher J. B. Engel-like elements in infinite soluble groups. (English) Zbl 0684.20023 Proc. Edinb. Math. Soc., II. Ser. 32, No. 3, 337-343 (1989). The authors consider the following sets of elements: \(A(G)=\{y|\) \(y\in G\); for each \(x\in G\) there are r and d such that \([x,_ ry]=[x,_{r+d}y]\}\), \(A^*(G)=\{z|\) \(z^ i\in A(G)\) for all \(i\}\), \(B(G)=\{x|\) \(x\in G\); for each \(y\in G\) there are r and d such that \([x,_ ry]=[x,_{r+d}y]\}\). In analogy to Engel elements, \(x^{-1}\in A(G)\) holds for all \(x\in B(G)\). In a locally soluble group G the sets \(A^*(G)\) and B(G), but not necessarily A(G), are subgroups; \(A^*(G)\) is the unique largest locally finite-by-nilpotent normal subgroup of G and \(B(G/B(G))=1\). If G is finitely generated and soluble and K is the subgroup generated by all finite normal subgroups of G, then B(G)/K is the hypercentre of G/K. Reviewer: H.Heineken MSC: 20F12 Commutator calculus 20F16 Solvable groups, supersolvable groups 20E07 Subgroup theorems; subgroup growth 20F45 Engel conditions Keywords:commutator cycles; Engel elements; locally soluble group; locally finite- by-nilpotent normal subgroup; finite normal subgroups; hypercentre PDF BibTeX XML Cite \textit{R. R. A. Brandl} and \textit{C. J. B. Brookes}, Proc. Edinb. Math. Soc., II. Ser. 32, No. 3, 337--343 (1989; Zbl 0684.20023) Full Text: DOI References: [1] Lennox, Proc. Edinburgh Math. Soc. 26 pp 25– (1983) [2] DOI: 10.1112/plms/s3-49.1.155 · Zbl 0537.20013 · doi:10.1112/plms/s3-49.1.155 [3] DOI: 10.1007/BF01236951 · Zbl 0099.25201 · doi:10.1007/BF01236951 [4] Robinson, Finiteness Conditions and Generalized Soluble Groups I (1972) · doi:10.1007/978-3-662-07241-7 [5] DOI: 10.1112/blms/18.1.7 · Zbl 0556.20028 · doi:10.1112/blms/18.1.7 [6] DOI: 10.1007/BF01175628 · Zbl 0504.20022 · doi:10.1007/BF01175628 [7] Gruenberg, Illinois J. Math. 3 pp 151– (1959) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.