×

zbMATH — the first resource for mathematics

Solving non-Markovian open quantum systems with multi-channel reservoir coupling. (English) Zbl 1257.81044
Summary: We extend the non-Markovian quantum state diffusion (QSD) equation to open quantum systems which exhibit multi-channel coupling to a harmonic oscillator reservoir. Open quantum systems which have multi-channel reservoir coupling are those in which canonical transformation of reservoir modes cannot reduce the number of reservoir operators appearing in the interaction Hamiltonian to one. We show that the non-Markovian QSD equation for multi-channel reservoir coupling can, in some cases, lead to an exact master equation which we derive. We then derive the exact master equation for the three-level system in a vee-type configuration which has multi-channel reservoir coupling and give the analytical solution. Finally, we examine the evolution of the three-level vee-type system with generalized Ornstein-Uhlenbeck reservoir correlations numerically.
MSC:
81S22 Open systems, reduced dynamics, master equations, decoherence
35R60 PDEs with randomness, stochastic partial differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Pauli, W., (), 30-45
[2] Wódkiewicz, K.; Eberly, J.H., Ann. physics, 101, 574-593, (1976)
[3] Gorini, V.; Kossakowski, A.; Sudarshan, E.C.G., J. math. phys., 17, 821-825, (1976)
[4] Lindblad, G., Comm. math. phys., 48, 119-130, (1976)
[5] Diósi, L.; Strunz, W.T., Phys. lett. A, 235, 569, (1997)
[6] Gisin, N.; Percival, I.C., J. phys. A, 25, 5677, (1992)
[7] Gisin, N.; Percival, I.C., J. phys. A, 26, 2245, (1993)
[8] Gisin, N.; Percival, I.C., J. phys. A, 26, 2233, (1993)
[9] Diósi, L.; Gisin, N.; Strunz, W.T., Phys. rev. A, 58, 1699, (1998)
[10] Yu, T.; Diósi, L.; Gisin, N.; Strunz, W.T., Phys. rev. A, 60, 91, (1999)
[11] Strunz, W.T.; Diósi, L.; Gisin, N., Phys. rev. lett., 82, 1801-1805, (1999)
[12] Yu, T., Phys. rev. A, 69, 062107, (2004)
[13] Strunz, W.T.; Yu, T., Phys. rev. A, 69, 052115, (2004)
[14] Jing, J.; Yu, T., Phys. rev. lett., 105, 240403, (2010)
[15] J. Jing, X. Zhao, J.Q. You, T. Yu, 2010. arXiv:1012.0364v1.
[16] J. Jing, Personal communication, 2011.
[17] Hu, B.L.; Paz, J.P.; Zhang, Y., Phys. rev. D, 45, 2843, (1992)
[18] Halliwell, J.J.; Yu, T., Phys. rev. D, 53, 2012, (1996)
[19] Ford, G.W.; O’Connell, R.F., Phys. rev. D, 64, 105020, (2001)
[20] Zanardi, P., Phys. rev. A, 57, 3276, (1998)
[21] Lidar, D.; Whaley, K.B., (), 83-120
[22] Lastra, F.; Reyes, S.A.; Wallentowitz, S., J. phys. B, 44, 015504, (2011)
[23] Zanardi, P.; Rasetti, M., Modern phys. lett. B, 11, 1085, (1997)
[24] Lidar, D.A.; Chuang, I.L.; Whaley, K.B., Phys. rev. lett., 81, 2594, (1998)
[25] Gatarek, D.; Gisin, N., J. math. phys., 32, 2152, (1991)
[26] Novikov, A., Sov. phys. JETP, 20, 1290, (1965)
[27] C.J. Broadbent, Unpublished results, 2011.
[28] Agarwal, G.S., Springer tracts in modern physics, vol. 70, (1974), Springer-Verlag Berlin, pp. 94-95
[29] Berman, P.R., Phys. rev. A, 58, 4886-4891, (1998)
[30] Dicke, R.H., Phys. rev., 93, 99, (1954)
[31] Breuer, H.-P.; Petruccione, F., The theory of open quantum systems, (2006), Oxford University Press
[32] Bacon, D.; Lidar, D.; Whaley, K., Phys. rev. A, 60, 1944-1955, (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.