×

Spectral Ewald acceleration of Stokesian dynamics for polydisperse suspensions. (English) Zbl 1351.76299

Summary: In this work we develop the Spectral Ewald Accelerated Stokesian Dynamics (SEASD), a novel computational method for dynamic simulations of polydisperse colloidal suspensions with full hydrodynamic interactions. SEASD is based on the framework of Stokesian Dynamics (SD) with extension to compressible solvents, and uses the Spectral Ewald (SE) method [D. Lindbo and A.-K. Tornberg, J. Comput. Phys. 229, No. 23, 8994–9010 (2010; Zbl 1282.76151)] for the wave-space mobility computation. To meet the performance requirement of dynamic simulations, we use Graphic Processing Units (GPU) to evaluate the suspension mobility, and achieve an order of magnitude speedup compared to a CPU implementation. For further speedup, we develop a novel far-field block-diagonal preconditioner to reduce the far-field evaluations in the iterative solver, and SEASD-nf, a polydisperse extension of the mean-field Brownian approximation of A. J. Banchio and the second author [“Accelerated Stokesian dynamics: Brownian motion”, J. Chem. Phys. 118, No. 22, 10323–10332 (2003; doi:10.1063/1.1571819)]. We extensively discuss implementation and parameter selection strategies in SEASD, and demonstrate the spectral accuracy in the mobility evaluation and the overall \(\mathcal{O}(N \log N)\) computation scaling. We present three computational examples to further validate SEASD and SEASD-nf in monodisperse and bidisperse suspensions: the short-time transport properties, the equilibrium osmotic pressure and viscoelastic moduli, and the steady shear Brownian rheology. Our validation results show that the agreement between SEASD and SEASD-nf is satisfactory over a wide range of parameters, and also provide significant insight into the dynamics of polydisperse colloidal suspensions.

MSC:

76T20 Suspensions
65R10 Numerical methods for integral transforms
65B10 Numerical summation of series
82C22 Interacting particle systems in time-dependent statistical mechanics
82C80 Numerical methods of time-dependent statistical mechanics (MSC2010)

Citations:

Zbl 1282.76151

Software:

mftoolbox; Matlab
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Russel, W. B.; Saville, D. A.; Schowalter, W. R., Colloidal Dispersions (1991), Cambridge University Press · Zbl 0789.76003
[2] Chong, J. S.; Christiansen, E. B.; Baer, A. D., Rheology of concentrated suspensions, J. Appl. Polym. Sci., 15, 2007 (1971)
[3] Rodriguez, B. E.; Kaler, E. W.; Wolfe, M. S., Binary mixtures of monodisperse latex dispersions. 2. Viscosity, Langmuir, 8, 2382 (1992)
[4] Shikata, T.; Niwa, H.; Morishima, Y., Viscoelastic behavior of bimodal suspensions, J. Rheol., 42, 765 (1998)
[5] Sentjabrskaja, T.; Babaliari, E.; Hendricks, J.; Laurati, M.; Petekidis, G.; Egelhaaf, S. U., Yielding of binary colloidal glasses, Soft Matter, 9, 4524 (2013)
[6] Semwogerere, D.; Weeks, E. R., Shear-induced particle migration in binary colloidal suspensions, Phys. Fluids, 20, Article 043306 pp. (2008) · Zbl 1182.76679
[7] Durlofsky, L.; Brady, J. F.; Bossis, G., Dynamic simulation of hydrodynamically interacting particles, J. Fluid Mech., 180, 21 (1987) · Zbl 0622.76040
[8] Batchelor, G. K., Sedimentation in a dilute polydisperse system of interacting spheres. Part 1. General theory, J. Fluid Mech., 119, 379 (1982) · Zbl 0498.76088
[9] Wagner, N. J.; Woutersen, A. T.J. M., The viscosity of bimodal and polydisperse suspensions of hard spheres in the dilute limit, J. Fluid Mech., 278, 267 (1994) · Zbl 0824.76006
[10] Zhang, H.; Nägele, G., Tracer-diffusion in binary colloidal hard-sphere suspensions, J. Chem. Phys., 117, 5908 (2002)
[11] Wang, M.; Brady, J. F., Short-time transport properties of bidisperse suspensions and porous media: a Stokesian Dynamics study, J. Chem. Phys., 142, Article 094901 pp. (2015)
[12] Wang, M.; Heinen, M.; Brady, J. F., Short-time diffusion in concentrated bidisperse hard-sphere suspensions, J. Chem. Phys., 142, Article 064905 pp. (2015)
[13] Ando, T.; Skolnick, J., Crowding and hydrodynamic interactions likely dominate in vivo macromolecular motion, Proc. Natl. Acad. Sci. USA, 107, 18457 (2010)
[14] Ladd, A. J.C., Hydrodynamic transport coefficients of random dispersions of hard spheres, J. Chem. Phys., 93, 3484 (1990)
[15] Cichocki, B.; Felderhof, B. U.; Hinsen, K.; Wajnryb, E.; Blawzdziewicz, J., Friction and mobility of many spheres in Stokes flow, J. Chem. Phys., 100, 3780 (1994)
[16] Youngren, G. K.; Acrivos, A., Stokes flow past a particle of arbitrary shape: a numerical method of solution, J. Fluid Mech., 69, 377 (1975) · Zbl 0314.76031
[17] Pozrikidis, C., Boundary Integral and Singularity Methods for Linearized Viscous Flow (1992), Cambridge University Press · Zbl 0772.76005
[18] Lucy, L. B., A numerical approach to the fission hypothesis, Astron. J., 82, 1013 (1977)
[19] Liu, G. R.; Liu, M. B., Smoothed Particle Hydrodynamics: A Meshfree Particle Method (2003), World Scientific · Zbl 1046.76001
[20] Hoogerbrugge, P. J.; Koelman, J. M.V. A., Simulating microscopic hydrodynamic phenomena with Dissipative Particle Dynamics, Europhys. Lett., 19, 155 (1992)
[21] Dünweg, B.; Ladd, A. J.C., Lattice Boltzmann simulations of soft matter systems, Adv. Polym. Sci., 221, 89 (2009)
[22] Abbas, M.; Climent, E.; Simonin, O.; Maxey, M. R., Dynamics of bidisperse suspensions under Stokes flows: linear shear flow and sedimentation, Phys. Fluids, 18, 121504 (2006) · Zbl 1146.76304
[23] Cichocki, B.; Ekiel-Jeźewska, M. L.; Wajnryb, E., Lubrication corrections for three-particle contribution to short-time self-diffusion coefficients in colloidal dispersions, J. Chem. Phys., 111, 3265 (1999)
[24] Cichocki, B.; Jones, R. B.; Kutteh, R.; Wajnryb, E., Friction and mobility for colloidal spheres in Stokes flow near a boundary: the multipole method and applications, J. Chem. Phys., 112, 2548 (2000)
[25] Yeo, K.; Maxey, M. R., Simulation of concentrated suspensions using the force-coupling method, J. Comput. Phys., 229, 2401 (2010) · Zbl 1303.76012
[26] Nguyen, N.-Q.; Ladd, A. J.C., Lubrication corrections for lattice-Boltzmann simulations of particle suspensions, Phys. Rev. E, 66, Article 046708 pp. (2002)
[27] Gallier, S.; Lemaire, E.; Lobry, L.; Peters, F., A fictitious domain approach for the simulation of dense suspensions, J. Comput. Phys., 256, 367 (2014) · Zbl 1349.76860
[28] Lefebvre-Lepot, A.; Merlet, B.; Nguyen, T. N., An accurate method to include lubrication forces in numerical simulations of dense Stokesian suspensions, J. Fluid Mech., 769, 369 (2015) · Zbl 1431.76045
[29] Lindbo, D.; Tornberg, A.-K., Spectrally accurate fast summation for periodic Stokes potentials, J. Comput. Phys., 229, 8994 (2010) · Zbl 1282.76151
[30] Lindbo, D.; Tornberg, A.-K., Spectral accuracy in fast Ewald-based methods for particle simulations, J. Comput. Phys., 230, 8744 (2011) · Zbl 1241.78008
[31] af Klinteberg, L.; Tornberg, A.-K., Fast Ewald summation for Stokesian particle suspensions, Int. J. Numer. Methods Fluids, 76, 669 (2014)
[32] Darden, T.; York, D.; Pedersen, L., Particle mesh Ewald: an Nlog(N) method for Ewald sums in large systems, J. Chem. Phys., 98, 10089 (1993)
[33] Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G., A smooth particle mesh Ewald method, J. Chem. Phys., 103, 8577 (1995)
[34] Greengard, L.; Rokhlin, V., A fast algorithm for particle simulations, J. Comput. Phys., 73, 325 (1987) · Zbl 0629.65005
[35] Ichiki, K., Improvement of the Stokesian Dynamics method for systems with a finite number of particles, J. Fluid Mech., 452, 231 (2002) · Zbl 1059.76059
[36] Sierou, A.; Brady, J. F., Accelerated Stokesian Dynamics simulations, J. Fluid Mech., 448, 115 (2001) · Zbl 1045.76034
[37] Saintillan, D.; Darve, E.; Shaqfeh, E. S.G., A smooth particle-mesh Ewald algorithm for Stokes suspension simulations: the sedimentation of fibers, Phys. Fluids, 17, Article 033301 pp. (2005) · Zbl 1187.76458
[38] Ermak, D. L.; McCammon, J. A., Brownian dynamics with hydrodynamic interactions, J. Chem. Phys., 69, 1352 (1978)
[39] Banchio, A. J.; Brady, J. F., Accelerated Stokesian Dynamics: Brownian motion, J. Chem. Phys., 118, 10323 (2003)
[41] Kumar, A.; Higdon, J. J.L., Origins of the anomalous stress behavior in charged colloidal suspensions under shear, Phys. Rev. E, 82, Article 051401 pp. (2010)
[42] Landau, L. D.; Lifshitz, E. M., Fluid Mechanics (1987), Butterworth-Heinemann
[43] Ladd, A. J.C.; Gang, H.; Zhu, J. X.; Weitz, D. A., Temporal and spatial dependence of hydrodynamic correlations: simulation and experiment, Phys. Rev. E, 52, 6550 (1995)
[44] Keaveny, E. E., Fluctuating force-coupling method for simulations of colloidal suspensions, J. Comput. Phys., 269, 61 (2014) · Zbl 1349.76862
[45] Delong, S.; Usabiaga, F. B.; Delgado-Buscalioni, R.; Griffith, B. E.; Donev, A., Brownian dynamics without Green’s functions, J. Chem. Phys., 140, 13 (2014)
[46] Kopp, M.; Höfling, F., GPU-accelerated simulation of colloidal suspensions with direct hydrodynamic interactions, Eur. Phys. J. Spec. Top., 210, 101 (2012)
[47] Ganesan, N.; Taufer, M.; Bauer, B.; Patel, S., FENZI: GPU-enabled molecular dynamics simulations of large membrane regions based on the CHARMM force field and PME, (IEEE IPDPSW (2011)), 472
[48] Harvey, M. J.; De Fabritiis, G., An implementation of the smooth particle mesh Ewald method on GPU hardware, J. Chem. Theory Comput., 5, 2371 (2009)
[49] Boyer, F.; Guazzelli, E.; Pouliquen, O., Unifying suspension and granular rheology, Phys. Rev. Lett., 107, Article 188301 pp. (2011)
[50] Brady, J. F.; Khair, A. S.; Swaroop, M., On the bulk viscosity of suspensions, J. Fluid Mech., 554, 109 (2006) · Zbl 1090.76071
[51] Brady, J. F., Brownian motion, hydrodynamics, and the osmotic pressure, J. Chem. Phys., 98, 3335 (1993)
[52] Morris, J. F.; Boulay, F., Curvilinear flows of noncolloidal suspensions: the role of normal stresses, J. Rheol., 43, 1213 (1999)
[53] Yurkovetsky, Y.; Morris, J. F., Particle pressure in sheared Brownian suspensions, J. Rheol., 52, 141 (2008)
[54] Kim, S.; Karrila, S. J., Microhydrodynamics (2005), Dover
[55] Makuch, K.; Cichocki, B., Transport properties of suspensions-critical assessment of Beenakker-Mazur method, J. Chem. Phys., 137, Article 184902 pp. (2012)
[56] Szymczak, P.; Cichocki, B., A diagrammatic approach to response problems in composite systems, J. Stat. Mech. Theory Exp., Article P01025 pp. (2008)
[57] van Saarloos, W.; Mazur, P., Many-sphere hydrodynamic interactions and mobilities in a suspension, Physica A, 115, 21 (1982)
[58] Ladd, A. J.C., Hydrodynamic interactions in a suspension of spherical particles, J. Chem. Phys., 88, 5051 (1988)
[59] Schmitz, R.; Felderhof, B. U., Creeping flow about a spherical particle, Physica A, 113, 90 (1982)
[60] Hasimoto, H., On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres, J. Fluid Mech., 5, 317 (1959) · Zbl 0086.19901
[61] Beenakker, C. W.J., Ewald sum of the Rotne-Prager tensor, J. Chem. Phys., 85, 1581 (1986)
[62] Swan, J. W.; Brady, J. F., Particle motion between parallel walls: hydrodynamics and simulation, Phys. Fluids, 22, 103301 (2010)
[63] Swan, J. W.; Brady, J. F., The hydrodynamics of confined dispersions, J. Fluid Mech., 687, 254 (2011) · Zbl 1241.76406
[64] Brady, J. F.; Phillips, R. J.; Lester, J. C.; Bossis, G., Dynamic simulation of hydrodynamically interacting suspensions, J. Fluid Mech., 195, 257 (1988) · Zbl 0653.76024
[65] Jeffrey, D. J.; Morris, J. F.; Brady, J. F., The pressure moments for two rigid spheres in low-Reynolds-number flow, Phys. Fluids A, 5, 10 (1993) · Zbl 0797.76015
[66] Khair, A. S.; Swaroop, M.; Brady, J. F., A new resistance function for two rigid spheres in a uniform compressible low-Reynolds-number flow, Phys. Fluids, 18, Article 043102 pp. (2006)
[67] Petersen, H. G., Accuracy and efficiency of the particle mesh Ewald method, J. Chem. Phys., 103, 3668 (1995)
[68] Deserno, M.; Holm, C., How to mesh up Ewald sums. I.A theoretical and numerical comparison of various particle mesh routines, J. Chem. Phys., 109, 7678 (1998)
[69] Greengard, L.; Lee, J.-Y., Accelerating the nonuniform Fast Fourier Transform, SIAM Rev., 46, 443 (2004) · Zbl 1064.65156
[70] Allen, M. P.; Tildesley, D. J., Computer Simulation of Liquids (1991), Clarendon Press · Zbl 0703.68099
[71] Hockney, R. W.; Eastwood, J. W., Computer Simulation Using Particles (1989), Adam Hilger · Zbl 0662.76002
[72] Wilson, H. J., Stokes flow past three spheres, J. Comput. Phys., 245, 302 (2013) · Zbl 1349.76653
[73] Foss, D. R.; Brady, J. F., Structure, diffusion and rheology of Brownian suspensions by Stokesian Dynamics simulation, J. Fluid Mech., 407, 167 (2000) · Zbl 0956.76092
[74] Sierou, A.; Brady, J. F., Rheology and microstructure in concentrated noncolloidal suspensions, J. Rheol., 46, 1031 (2002)
[75] Saad, Y., Iterative Methods for Sparse Linear Systems (2003), SIAM · Zbl 1002.65042
[76] Jeffrey, D. J.; Onishi, Y., Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow, J. Fluid Mech., 139, 261 (1984) · Zbl 0545.76037
[77] Jeffrey, D. J., The calculation of the low Reynolds number resistance functions for two unequal spheres, Phys. Fluids A, 4, 16 (1992)
[78] Evans, D. J.; Morriss, G., Statistical Mechanics of Nonequilibrium Liquids (2008), Cambridge University Press · Zbl 1189.82064
[79] Bossis, G.; Brady, J. F., Self-diffusion of Brownian particles in concentrated suspensions under shear, J. Chem. Phys., 87, 5437 (1987)
[80] Jendrejack, R. M.; Graham, M. D.; de Pablo, J. J., Hydrodynamic interactions in long chain polymers: application of the Chebyshev polynomial approximation in stochastic simulations, J. Chem. Phys., 113, 2894 (2000)
[81] Higham, N. J., Functions of Matrices: Theory and Computation (2008), SIAM · Zbl 1167.15001
[82] Boyd, S. K.; Baglama, J.; Allen, E. J., Numerical approximation of the product of the square root of a matrix with a vector, Linear Algebra Appl., 310, 167 (2000) · Zbl 0972.65029
[83] Trefethen, L. N., Spectral Methods in MATLAB (2000), SIAM · Zbl 0953.68643
[85] Lubachevsky, B. D.; Stillinger, F. H., Geometric properties of random disk packings, J. Stat. Phys., 60, 561 (1990) · Zbl 1086.82569
[86] Skoge, M.; Donev, A.; Stillinger, F. H.; Torquato, S., Packing hyperspheres in high-dimensional Euclidean spaces, Phys. Rev. E, 74, Article 041127 pp. (2006)
[87] Percus, J. K.; Yevick, G. J., Analysis of classical statistical mechanics by means of collective coordinates, Phys. Rev., 110, 1 (1958) · Zbl 0096.23105
[88] Lebowitz, J. L., Exact solution of generalized Percus-Yevick equation for a mixture of hard spheres, Phys. Rev., 133, Article A895 pp. (1964) · Zbl 0125.23502
[89] Ashcroft, N. W.; Langreth, D. C., Structure of binary liquid mixtures. I, Phys. Rev., 156, 685 (1967)
[90] Ashcroft, N. W.; Langreth, D. C., Errata, Phys. Rev., 166, 934 (1968)
[91] Phillips, R. J.; Brady, J. F.; Bossis, G., Hydrodynamic transport properties of hard-sphere dispersions. I. Suspensions of freely mobile particles, Phys. Fluids, 31, 3462 (1988)
[92] Swaroop, M., The bulk viscosity of suspensions (2010), California Institute of Technology, PhD thesis
[93] Mansoori, G. A.; Carnahan, N. S.; Starling, K. E.; Leland, T. W., Equilibrium thermodynamic properties of the mixture of hard spheres, J. Chem. Phys., 54, 1523 (1971)
[94] Brady, J. F., The rheological behavior of concentrated colloidal dispersions, J. Chem. Phys., 99, 567 (1993)
[95] Nägele, G.; Bergenholtz, J., Linear viscoelasticity of colloidal mixtures, J. Chem. Phys., 108, 9893 (1998)
[96] Lindbo, D.; Tornberg, A.-K., Fast and spectrally accurate summation of 2-periodic Stokes potentials · Zbl 1282.76151
[97] Vollebregt, H. M.; van der Sman, R. G.M.; Boom, R. M., Model for particle migration in bidisperse suspensions by use of effective temperature, Faraday Discuss., 158, 89 (2012)
[98] Foss, D. R.; Brady, J. F., Brownian dynamics simulation of hard-sphere colloidal dispersions, J. Rheol., 44, 629 (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.