×

The Maxwell-Stefan diffusion limit for a kinetic model of mixtures with general cross sections. (English) Zbl 1378.82044

The paper deals with mass transport in gaseous mixture. Its main purpose is to show how one can derive the Maxwell-Stefan formalism from the Boltzmann equation involving particle mixture. One introduces kinetic models for monoatomic gaseous mixtures and then one displays computational results on the Maxwell-Stefan diffusion equation. The introduction of the paper is pedagogically very interesting.

MSC:

82C40 Kinetic theory of gases in time-dependent statistical mechanics
35Q20 Boltzmann equations
82C70 Transport processes in time-dependent statistical mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bardos, C.; Golse, F.; Levermore, C., Fluid dynamic limits of kinetic equations. I. Formal derivations, J. Stat. Phys., 63, 1-2, 323-344 (1991)
[2] Bardos, C.; Golse, F.; Levermore, C., Fluid dynamic limits of kinetic equations. II. Convergence proofs for the Boltzmann equation, Comm. Pure Appl. Math., 46, 5, 667-753 (1993) · Zbl 0817.76002
[3] Bisi, M.; Spiga, G., On kinetic models for polyatomic gases and their hydrodynamic limits, Ric. Mat., 1-12 (2016)
[4] Bothe, D., On the Maxwell-Stefan approach to multicomponent diffusion, (Parabolic Problems. Parabolic Problems, Progr. Nonlinear Differential Equations Appl., vol. 80 (2011), Birkhäuser/Springer: Birkhäuser/Springer Basel AG, Basel), 81-93 · Zbl 1250.35127
[5] Boudin, L.; Götz, D.; Grec, B., Diffusion models of multicomponent mixtures in the lung, (CEMRACS 2009: Mathematical Modelling in Medicine. CEMRACS 2009: Mathematical Modelling in Medicine, ESAIM Proc., vol. 30 (2010), EDP Sci.: EDP Sci. Les Ulis), 90-103 · Zbl 1202.76106
[6] Boudin, L.; Grec, B.; Pavić, M.; Salvarani, F., Diffusion asymptotics of a kinetic model for gaseous mixtures, Kinet. Relat. Models, 6, 1, 137-157 (2013) · Zbl 1260.35100
[7] Boudin, L.; Grec, B.; Salvarani, F., A mathematical and numerical analysis of the Maxwell-Stefan diffusion equations, Discrete Contin. Dyn. Syst. Ser. B, 17, 5, 1427-1440 (2012) · Zbl 1245.35091
[8] Boudin, L.; Grec, B.; Salvarani, F., The Maxwell-Stefan diffusion limit for a kinetic model of mixtures, Acta Appl. Math., 136, 79-90 (2015) · Zbl 1320.35250
[10] Bourgat, J.-F.; Desvillettes, L.; Le Tallec, P.; Perthame, B., Microreversible collisions for polyatomic gases and Boltzmann’s theorem, Eur. J. Mech. B Fluids, 13, 2, 237-254 (1994) · Zbl 0807.76067
[11] Briant, M., Stability of global equilibrium for the multi-species Boltzmann equation in \(L^\infty\) settings, Discrete Contin. Dyn. Syst., 36, 12, 6669-6688 (2016) · Zbl 1356.35152
[12] Briant, M.; Daus, E., The Boltzmann equation for a multi-species mixture close to global equilibrium, Arch. Ration. Mech. Anal., 222, 3, 1367-1443 (2016) · Zbl 1375.35298
[13] Brull, S.; Pavan, V.; Schneider, J., Derivation of a BGK model for mixtures, Eur. J. Mech. B Fluids, 33, 74-86 (2012) · Zbl 1258.76122
[14] Chang, H. K., Multicomponent diffusion in the lung, Fed. Proc., 39, 10, 2759-2764 (1980)
[15] Chapman, S.; Cowling, T. G., (The Mathematical Theory of Nonuniform Gases. The Mathematical Theory of Nonuniform Gases, Cambridge Mathematical Library (1990), Cambridge University Press: Cambridge University Press Cambridge), An account of the kinetic theory of viscosity, thermal conduction and diffusion in gases, In co-operation with D. Burnett, With a foreword by Carlo Cercignani · JFM 65.1541.01
[16] Chen, L.; Jüngel, A., Analysis of a multidimensional parabolic population model with strong cross-diffusion, SIAM J. Math. Anal., 36, 1, 301-322 (2004) · Zbl 1082.35075
[17] Chen, X.; Jüngel, A., Analysis of an incompressible Navier-Stokes-Maxwell-Stefan system, Comm. Math. Phys., 340, 2, 471-497 (2015) · Zbl 1331.35273
[18] Curtiss, C. F., Symmetric gaseous diffusion coefficients, J. Chem. Phys., 49, 7, 2917-2919 (1968)
[19] Daus, E. S.; Jüngel, A.; Mouhot, C.; Zamponi, N., Hypocoercivity for a linearized multispecies Boltzmann system, SIAM J. Math. Anal., 48, 1, 538-568 (2016) · Zbl 1350.35141
[20] Desvillettes, L.; Lepoutre, T.; Moussa, A., Entropy, duality, and cross diffusion, SIAM J. Math. Anal., 46, 1, 820-853 (2014) · Zbl 1293.35142
[21] Desvillettes, L.; Monaco, R.; Salvarani, F., A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions, Eur. J. Mech. B Fluids, 24, 2, 219-236 (2005) · Zbl 1060.76100
[22] Duncan, J. B.; Toor, H. L., An experimental study of three component gas diffusion, AIChE J., 8, 1, 38-41 (1962)
[23] Fick, A., Ueber diffusion, Ann. Phys., 170, 59-86 (1855)
[24] Garzó, V.; Santos, A.; Brey, J. J., A kinetic model for a multicomponent gas, Phys. Fluids A, 1, 2, 380-383 (1989) · Zbl 0661.76080
[25] Giovangigli, V., Convergent iterative methods for multicomponent diffusion, Impact Comput. Sci. Eng., 3, 3, 244-276 (1991) · Zbl 0744.65090
[26] Giovangigli, V., (Multicomponent Flow Modeling. Multicomponent Flow Modeling, Modeling and Simulation in Science, Engineering and Technology (1999), Birkhäuser Boston Inc.: Birkhäuser Boston Inc. Boston, MA)
[27] Golse, F.; Saint-Raymond, L., The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels, Invent. Math., 155, 1, 81-161 (2004) · Zbl 1060.76101
[28] Grad, H., On the kinetic theory of rarefied gases, Comm. Pure Appl. Math., 2, 331-407 (1949) · Zbl 0037.13104
[29] Graham, T., Researches on the arseniates, phosphates, and modifications of phosphoric acid, Philos. Trans. R. Soc. Lond., 123, 253-284 (1833)
[30] Heckl, M.; Müller, I., Frame dependence, entropy, entropy flux, and wave speeds in mixtures of gases, Acta Mech., 50, 1-2, 71-95 (1983) · Zbl 0555.76056
[32] Jüngel, A., The boundedness-by-entropy method for cross-diffusion systems, Nonlinearity, 28, 6, 1963-2001 (2015) · Zbl 1326.35175
[33] Jüngel, A.; Stelzer, I. V., Existence analysis of Maxwell-Stefan systems for multicomponent mixtures, SIAM J. Math. Anal., 45, 4, 2421-2440 (2013) · Zbl 1276.35104
[34] Kogan, M., On the principle of maximum entropy, (Rarefied Gas Dynamics, Volume 1 (1967)), 359
[35] Krishna, R.; Wesselingh, J. A., The Maxwell-Stefan approach to mass transfer, Chem. Eng. Sci., 52, 6, 861-911 (1997)
[36] Le Tallec, P.; Perlat, J.-P., Numerical analysis of Levermore’s moment system. Research Report RR-3124 (1997), Inria, Projet M3N
[37] Le Tallec, P.; Perlat, J. P., Boundary conditions and existence results for Levermore’s moments system, Math. Models Methods Appl. Sci., 10, 1, 127-152 (2000) · Zbl 1010.82031
[38] Lepoutre, T.; Pierre, M.; Rolland, G., Global well-posedness of a conservative relaxed cross diffusion system, SIAM J. Math. Anal., 44, 3, 1674-1693 (2012) · Zbl 1255.35134
[39] Levermore, C. D., Moment closure hierarchies for kinetic theories, J. Stat. Phys., 83, 5-6, 1021-1065 (1996) · Zbl 1081.82619
[40] Lou, Y.; Martínez, S., Evolution of cross-diffusion and self-diffusion, J. Biol. Dyn., 3, 4, 410-429 (2009) · Zbl 1342.92189
[41] Lou, Y.; Ni, W.-M., Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131, 1, 79-131 (1996) · Zbl 0867.35032
[42] Marion, M.; Temam, R., Global existence for fully nonlinear reaction-diffusion systems describing multicomponent reactive flows, J. Math. Pures Appl. (9), 104, 1, 102-138 (2015) · Zbl 1323.35076
[43] Maxwell, J. C., On the dynamical theory of gases, Philos. Trans. R. Soc., 157, 49-88 (1866)
[44] Müller, I., A thermodynamic theory of mixtures of fluids, Arch. Ration. Mech. Anal., 28, 1, 1-39 (1968) · Zbl 0157.56703
[45] Müller, I.; Ruggeri, T., (Rational Extended Thermodynamics. Rational Extended Thermodynamics, Springer Tracts in Natural Philosophy, vol. 37 (1998), Springer-Verlag: Springer-Verlag New York), With supplementary chapters by H. Struchtrup and Wolf Weiss
[46] Pavić-Čolić, M.; Simić, S., Moment closure hierarchies for rarefied gases, Theoret. Appl. Mech., 42, 4, 261-276 (2015) · Zbl 1462.76157
[47] Perrin, J., Mouvement brownien et réalité moléculaire, Ann. Chim. Phys., 123, 5-104 (1909)
[48] Ruggeri, T.; Simić, S., Average temperature and Maxwellian iteration in multitemperature mixtures of fluids, Phys. Rev. E, 80, 2, Article 026317 pp. (2009)
[49] Schneider, J., Entropic approximation in kinetic theory, M2AN Math. Model. Numer. Anal., 38, 3, 541-561 (2004) · Zbl 1084.82010
[50] Schwartz, L., Les Tenseurs (1981), Hermann: Hermann Paris, Suivi de “Torseurs sur un espace affine”. [With “Torsors on an affine space”] by Y. Bamberger and J.-P. Bourguignon
[51] Shigesada, N.; Kawasaki, K.; Teramoto, E., Spatial segregation of interacting species, J. Theoret. Biol., 79, 1, 83-99 (1979)
[52] Simić, S.; Pavić-Čolić, M.; Madjarević, D., Non-equilibrium mixtures of gases: modelling and computation, Riv. Math. Univ. Parma (N.S.), 6, 1, 135-214 (2015) · Zbl 1481.76186
[53] Stefan, J., Ueber das Gleichgewicht und die Bewegung insbesondere die Diffusion von Gasgemengen, Akad. Wiss. Wien, 63, 63-124 (1871)
[54] Williams, F., Combustion Theory (1985), Benjamin Cummings
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.