×

Bending of the “\(9+2\)” axoneme analyzed by the finite element method. (English) Zbl 1406.92024

Summary: Many data demonstrate that the regulation of the bending polarity of the “\(9+2\)” axoneme is supported by the curvature itself, making the internal constraints central in this process, adjusting either the physical characteristics of the machinery or the activity of the enzymes involved in different pathways. Among them, the very integrated geometric clutch model founds this regulation on the convenient adjustments of the probability of interaction between the dynein arms and the \(\beta\)-tubulin monomers of the outer doublet pairs on which they walk. Taking into consideration (i) the deviated bending of the outer doublets pairs [the first author and J. V. Heck, “Geometry drives the “deviated-bending” of the bi-tubular structures of the \(9+2\) axoneme in the flagellum”, Cell Motil. Cytoskeleton 59, No. 3, 153–168 (2004; doi:10.1002/cm.20031)], (ii) the internal tensions of the radial spokes and the tangential links (nexin links, dynein arms), (iii) a theoretical \(5\) \(\mu\)m long proximal segment of the axoneme and (iv) the short proximal segment of the axoneme, we have reevaluated the adjustments of these intervals using a finite element approach. The movements we have calculated within the axonemal cylinder are consistent with the basic hypothesis that found the geometric clutch model, except that the axonemal side where the dynein arms are active increases the intervals between the two neighbor outer doublet pairs. This result allows us to propose a mechanism of bending reversion of the axoneme, involving the concerted ignition of the molecular engines along the two opposite sides of the axoneme delineated by the bending plane.

MSC:

92C10 Biomechanics
92C37 Cell biology
74S05 Finite element methods applied to problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Badoual, M.; Julicher, F.; Prost, J., Bidirectional cooperative motion of molecular motors, Proc. Natl. Acad. Sci. USA, 99, 6696-6701 (2002)
[2] Barabasi, A. L.; Albert, R., Emergence of scaling in random networks, Science, 286, 509-512 (1999) · Zbl 1226.05223
[3] Barabasi, A. L.; Bonabeau, E., Scale-free networks, Sci. Am., 288, 60-69 (2003)
[4] Brokaw, C., Computer simulation of flagellar movement: VII. Conventional but functionally different cross-bridge models for inner and outer arm dyneins can explain the effects of outer arm dynein removal, Cell Motil. Cytoskeleton, 42, 134-148 (1999)
[5] Brokaw, C. J., Effects of increased viscosity on the movements of some invertebrate spermatozoa, J. Exp. Biol., 45, 113-139 (1966)
[6] Brokaw, C. J., Mechanics and energetics of cilia, Am. Rev. Respir. Dis., 9, Suppl., 32-40 (1966)
[7] Brokaw, C. J., Effects of viscosity and ATP concentration on the movement of reactivated sea-urchin sperm flagella, J. Exp. Biol., 62, 701-719 (1975)
[8] Brokaw, C. J., Direct measurements of sliding between outer doublet microtubules in swimming sperm flagella, Science, 243, 1593-1596 (1989)
[9] Brokaw, C. J., Microtubule sliding, bend initiation, and bend propagation parameters of Ciona sperm flagella altered by viscous load, Cell Motil. Cytoskeleton, 33, 6-21 (1996)
[10] Bui, K. H.; Sakakibara, H.; Movassagh, T.; Oiwa, K.; Ishikawa, T., Molecular architecture of inner dynein arms in situ in Chlamydomonas reinhardtii flagellum, J. Cell Biol., 183, 923-932 (2008)
[11] Burgess, S.; Knight, P., Is the dynein motor a winch?, Curr. Opin. Struct. Biol., 14, 138-146 (2004)
[12] Burgess, S.; Carter, D.; Dover, S.; Woolley, D., The inner dynein arm complex: compatible images from freeze-etch and thin section methods of microscopy, J. Cell Sci., 100, 319-328 (1991)
[13] Burgess, S.; Walker, M.; Sakakibara, H.; Oiwa, K., Dynein structure and power stroke, Nature, 421, 715-718 (2003)
[14] Burgess, S. A.; Dover, S. D.; Wooley, D. M., Architecture of the outer arm dynein ATPase in an avian sperm flagellum, with further evidence of the B-link, J. Cell Sci., 98, 17-26 (1991)
[15] Carter, A. P.; Garbarino, J. E.; Wilson-Kubalek, E. M.; Shipley, W. E.; Cho, C.; Milligan, R. A.; Vale, R. D.; Gibbons, I. R., Structure and functional role of dynein’s microtubule-binding domain, Science, 322, 1691-1695 (2008)
[16] Cibert, C., Elastic extension and jump of the flagellar nexin links: a theoretical mechanical cycle, Cell Motil. Cytoskeleton, 49, 161-175 (2001)
[17] Cibert, C., Axonemal activity relative to the 2D/3D-waveform conversion of the flagellum, Cell Motil. Cytoskeleton, 51, 89-111 (2002)
[18] Cibert, C., Entropy and information in flagellar axoneme cybernetics: a radial spokes integrative function, Cell Motil. Cytoskeleton, 54, 296-316 (2003)
[19] Cibert, C.; Heck, J. V., Geometry drives the “deviated-bending” of the bi-tubular structures of the 9+2 axoneme in the flagellum, Cell Motil. Cytoskeleton, 59, 153-168 (2004)
[20] Cortez, R.; Cowen, N.; Dillon, R.; Fauci, L., Simulation of swimming organisms: coupling internal mechanics with external fluid dynamics, Comput. Sci. Eng., 6, 38-45 (2004)
[21] Downing, K. H.; Sui, H., Structural insights into microtubule doublet interactions in axoneme, Curr. Opin. Struct. Biol., 17, 253-259 (2007)
[22] Dymek, E. E.; Smith, E., A conserved CaM- and radial spoke-associated complex mediates regulation of flagellar dynein activity, J. Cell Biol., 179, 515-526 (2007)
[23] Gardner, L.; O’Toole, E.; Perrone, A.; Giddings, T.; Porter, M., Components of a “dynein regulatory complex” are located at the junction between the radial spokes and the dynein arms in Chlamydomonas flagella, J. Cell Biol., 127, 1311-1335 (1994)
[24] Gennerich, A.; Carter, A.; Reck-Peterson, S.; Vale, R., Force-induced bidirectional stepping of cytoplasmic dynein, Cell, 131, 952-965 (2007)
[25] Gertsberg, I.; Hellman, V.; Fainshtein, M.; Weil, S.; Silberberg, S. D.; Danilenko, M.; Priel, Z., Intracellular \(Ca^{2+}\) regulates the phosphorylation and the dephosphorylation of ciliary proteins via the NO pathway, J. Gen. Physiol., 124, 527-540 (2004)
[26] Gibbons, I. R., Cilia and flagella of eukaryotes, J. Cell Biol., 91, 1071-1245 (1981)
[27] Goedecke, D. M.; Elston, T. C., A model for the oscillatory motion of single dynein molecules, J. Theor. Biol., 232, 27-39 (2005) · Zbl 1442.92045
[28] Goldstein, B. N.; Aksirov, A. M.; Zakrjevskaya, D. T., Kinetic model for dynein ascillation activity, Biophys. Chem., 134, 20-24 (2008)
[29] Goldstein, S., Form of developing bends in reactivated sperm flagella, J. Exp. Biol, 64, 173-184 (1976)
[30] Goodenough, U.; Heuser, J., Substructure of inner dynein arms, radial spokes, and the central pair/projection complex of cilia and flagella, J. Cell Biol., 100, 2008-2018 (1985)
[31] Hamasaki, T.; Holwill, M. E.; Barkalow, K.; Satir, P., Mechanochemical aspects of axonemal dynein activity studied by in vitro microtubule translocation, Biophys. J., 69, 2569-2579 (1995)
[32] Hayashi, S.; Shingyoji, C., Bending-induced switching of dynein activity in elastase-treated axonemes of sea urchin sperm, roles of \(Ca^{2+}\) and ADP, Cell Motil. Cytoskeleton, 66, 292-301 (2009)
[33] Hilfinger, A.; Jülicher, F., The chirality of ciliary beats, Phys. Biol., 5, 1-12 (2008)
[34] Huang, B.; Ramanis, Z.; Luck, D. J.L., Suppressor mutation in Chlamydomonas reveals a regulatory mechanism of flagellar function, Cell, 28, 115-124 (1982)
[35] Inaba, K., Molecular architecture of the sperm flagella: molecules for motility and signaling, Zool. Sci., 20, 1043-1056 (2003)
[36] Ishikawa, T.; Sakakibara, H.; Oiwa, K., The architecture of outer dynein arms in situ, J. Mol. Biol., 368, 1249-1258 (2007)
[37] Lahtinen, J.; Kertesz, J.; Kaski, K., Scaling of random spreading in small world networks, Phys. Rev. E—Stat. Nonlinear Soft Matter Phys., 64, 057105 (2001)
[38] Li, C.; Ru, C. Q.; Mioduchowski, A., Torsion of the central pair microtubules in eukaryotic flagella due to bending-driven lateral buckling, Biochem. Biophys. Res. Commun., 351, 159-164 (2006)
[39] Lindemann, C., A “geometric clutch” hypothesis to explain oscillations of the axoneme of cilia and flagella, J. Theor. Biol., 168, 175-189 (1994)
[40] Lindemann, C., Structural-functional relationships of the dynein, spokes, and central-pair projections predicted from an analysis of the forces acting within a flagellum, Biophys. J., 84, 4115-4126 (2003)
[41] Lindemann, C.; Hunt, A., Does axonemal dynein push, pull or oscillate ?, Cell Motil. Cytoskeleton, 56, 237-244 (2003)
[42] Lindemann, C. B., A model of flagellar and ciliary functioning which uses the forces transverse to the axoneme as the regulator of dynein activation, Cell Motil. Cytoskeleton, 29, 141-154 (1994)
[43] Lindemann, C. B., The Geometric Clutch as a working hypothesis for future research on cilia and flagella, Ann. N. Y. Acad. Sci., 477-493 (2007)
[44] Lindemann, C. B.; Mitchell, D. R., Evidence for axonemal distortion during the flagellar beat of Chlamydomonas, Cell Motil. Cytoskeleton, 64, 580-589 (2007)
[45] Lindemann, C. B.; Macauley, L. J.; Lesich, K. A., The counterbend phenomenon in dynein-disabled rat sperm flagella and what it reveals about the interdoublet elasticity, Biophys. J., 89, 1165-1174 (2005)
[46] Lorch, D. P.; Lindemann, C.; Hunt, A., The motor activity of mammalian axonemal dynein studied in situ on doublet microtubules, Cell Motil. Cytoskeleton, 65, 487-494 (2008)
[47] Mallik, R.; Carter, B. C.; Lex, S. A.; King, S. J.; Gross, S. P., Cytoplasmic dynein functions as a gear in response to load, Nature, 427, 649-652 (2004)
[48] Mitchell, B.F., Pedersen, L.B., Feely, M., Rosenbaum, J.L., Mitchell, D.R., 2005. ATP Production in Chlamydomonas reinhardtii; Mitchell, B.F., Pedersen, L.B., Feely, M., Rosenbaum, J.L., Mitchell, D.R., 2005. ATP Production in Chlamydomonas reinhardtii
[49] Mitchell, D., Reconstruction of the projection periodicity and surface architecture of the flagellar central pair complex, Cell Motil. Cytoskeleton, 55, 188-199 (2003)
[50] Mitchell, D. R., Orientation of the central pair complex during flagellar bend formation in Chlamydomonas, Cell Motil. Cytoskeleton, 56, 120-129 (2003)
[51] Mitchell, D. R.; Nakatsugawa, M., Bend propagation drives central pair rotation in Chlamydomonas reinhardtii flagella, J. Cell Biol., 166, 709-715 (2004)
[52] Morita, M.; Takemura, A.; Nakajima, A.; Okuno, M., Microtubule sliding movement in tilapia sperm flagella axoneme is regulated by Ca(2+)/calmodulin-dependent protein phosphorylation, Cell Motil. Cytoskeleton, 63, 459-470 (2006)
[53] Morita, Y.; Shingyoji, C., Effects of imposed bending on microtubule sliding in sperm flagella, Curr. Biol., 14, 2113-2118 (2004)
[54] Nakano, I.; Kobayashi, T.; Yoshimura, M.; Shingyoji, C., Central-pair-linked regulation of microtubule sliding by calcium in flagellar axonemes, J. Cell Sci., 116, 1627-1636 (2003)
[55] Newman, M. E., The structure and function of complex networks, SIAM Rev., 45, 167-256 (2003) · Zbl 1029.68010
[56] Newman, M. E.; Watts, D. J., Scaling and percolation in the small-world network model, Phys. Rev. E—Stat. Phys. Plasmas Fluids Relat. Interdisciplinary Top., 60, 7332-7342 (1999)
[57] Newman, M. E.; Strogatz, S. H.; Watts, D. J., Random graphs with arbitrary degree distributions and their applications, Phys. Rev. E—Stat. Nonlinear Soft Matter Phys., 64, 026118 (2001)
[58] Newman, M. E.; Watts, D. J.; Strogatz, S. H., Random graph models of social networks, Proc. Natl. Acad. Sci. USA, 99, Suppl. 1, 2566-2572 (2002) · Zbl 1114.91362
[59] Noguchi, M.; Ogawa, T.; Taneyama, T., Control of ciliary orientation through cAMP-dependent phosphorylation of axonemal proteins in Paramecium caudatum, Cell Motil. Cytoskeleton, 45, 263-271 (2000)
[60] Noguchi, M.; Kitani, T.; Ogawa, T.; Inoue, H.; Kamachi, H., Augmented ciliary reorientation response and cAMP-dependent protein phosphorylation induced by glycerol in triton-extracted Paramecium, Zool. Sci., 22, 41-48 (2005)
[61] Omoto, C.; Palmer, J.; Moody, M., Cooperativity, in axonemal motion: analysis of a four-state, two-site kinetic model, Proc. Natl. Acad. Sci. USA, 88, 5562-5566 (1991)
[62] Piperno, G.; Mead, K.; Shestak, W., The inner dynein arms I2 interact with a “Dynein Regulatory Complex” in Chlamydomonas flagella, J. Cell Biol., 118, 1455-1463 (1992)
[63] Roberts, A. J.; Numata, N.; Walker, M. L.; Kato, Y. S.; Malkova, B.; Kon, T.; Ohkura, R.; Arisaka, F.; Knight, P. J.; Sutoh, K.; Burgess, S. A., AAA+ring and linker swing mechanism in the dynein motor, Cell, 136, 485-495 (2009)
[64] Ross, J. L.; Wallace, K.; Shuman, H.; Goldman, Y. E.; Holzbaur, E. L., Processive bidirectional motion of dynein-dynactin complexes in vitro, Nat. Cell Biol., 8, 562-570 (2006)
[65] Rupp, G.; Porter, M., A subunit of the dynein regulatory complex in Chlamydomonas is a homologue of a growth arrest-specific gene product, J. Cell Biol., 162, 47-57 (2003)
[66] Sakakibara, H.; Kunioka, Y.; Yamada, T.; Kamimura, S., Diameter oscillation of axonemes in sea-urchin sperm flagella, Biophys. J., 86, 346-352 (2004)
[67] Satir, P.; Matsuoka, T., Splitting the ciliary axoneme implications for a ‘switch-point’ model of dynein arm activity in ciliary motion, Cell Motil. Cytoskeleton, 14, 345-358 (1989)
[68] Schoutens, J., Prediction of elastic properties of sperm flagella, J. Theor. Biol., 171, 163-177 (1994)
[69] Shingyoji, C.; Higuchi, H.; Yoshimura, M.; katayama, R.; Yanagida, T., Dynein arms are oscillating force generators, Nature, 293, 711-714 (1998)
[70] Smith, E.; Yang, P., The radial spokes and central apparatus: mechano-chemical transducers that regulate flagellar motility, Cell Motil. Cytoskeleton, 57, 8-17 (2004)
[71] Sui, H.; Downing, K. H., Molecular architecture of axonemal microtubule doublets revealed by cryo-electron tomography, Nature, 442, 475-478 (2006)
[72] Tuszynski, J. A.; Luchko, T.; Portet, S.; Dixon, J. M., Anisotropic elastic properties of microtubules, Eur. Phys. J.—E: Soft Matter, 17, 29-35 (2005)
[73] Ueno, H.; Yasunaga, T.; Shingyoji, C.; Hirose, K., Dynein pulls microtubules without rotating its stalk, Proc. Natl. Acad. Sci. USA, 105, 19702-19707 (2008)
[74] Warner, F., Cross-bridge mechanism in ciliary motility: the sliding-bending conversion, (Goldman, R.; etal., Cell Motility (Part C) (1976), Cold Spring Harbor Laboratory), 891-914
[75] Wilson, N. F.; Lefebvre, P. A., Regulation of flagellar assembly by glycogen synthase kinase 3 in Chlamydomonas reinhardtii, Eukaryot. Cell, 3, 1307-1319 (2004)
[76] Woolley, D. M., Studies on the eel sperm flagellum. I. The structure of the inner dynein arm complex, J. Cell Sci., 110, 85-94 (1997)
[77] Yang, P.; Diener, D.; Rosenbaum, J.; Sale, W., Localization of calmodulin and dynein light chain LC8 in flagellar radial spokes, J. Cell Biol., 153, 1315-1325 (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.