×

Real science at the petascale. (English) Zbl 1185.65245

Summary: We describe computational science research that uses petascale resources to achieve scientific results at unprecedented scales and resolution. The applications span a wide range of domains, from investigation of fundamental problems in turbulence through computational materials science research to biomedical applications at the forefront of HIV/AIDS research and cerebrovascular haemodynamics. This work was mainly performed on the US TeraGrid ‘petascale’ resource, Ranger, at Texas Advanced Computing Center, in the first half of 2008 when it was the largest computing system in the world available for open scientific research. We have sought to use this petascale supercomputer optimally across application domains and scales, exploiting the excellent parallel scaling performance found on up to at least 32 768 cores for certain of our codes in the so-called ‘capability computing’ category as well as high-throughput intermediate-scale jobs for ensemble simulations in the 32-512 core range. Furthermore, this activity provides evidence that conventional parallel programming with MPI should be successful at the petascale in the short to medium term. We also report on the parallel performance of some of our codes on up to 65 636 cores on the IBM Blue Gene/P system at the Argonne Leadership Computing Facility, which has recently been named the fastest supercomputer in the world for open science.

MSC:

65Y05 Parallel numerical computation
68U01 General topics in computing methodologies
76M28 Particle methods and lattice-gas methods
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] 3 pp 325– (1990) · Zbl 0702.58064 · doi:10.1088/0951-7715/3/2/005
[2] Europhysics Letters 43 pp 683– (1998) · doi:10.1209/epl/i1998-00417-3
[3] Journal of computational chemistry 16 pp 1522– (1995) · Zbl 05428058 · doi:10.1002/jcc.540161209
[4] Chen, Science 277 (5330) pp 1248– (1997) · doi:10.1126/science.277.5330.1248
[5] CHEM SOC REV 37 pp 568– (2008) · doi:10.1039/B702653F
[6] Computer Physics Communications 176 pp 406– (2007) · Zbl 05801703 · doi:10.1016/j.cpc.2006.11.011
[7] J FLUID MECHANICS 167 pp 353– (1986) · Zbl 0622.76027 · doi:10.1017/S0022112086002859
[8] 36 pp 12 364– (1997) · doi:10.1021/bi971072e
[9] The Journal of Chemical Physics 123 pp 084 108– (2005) · doi:10.1063/1.1999637
[10] Europhysics Letters 73 pp 533– (2006) · doi:10.1209/epl/i2005-10438-x
[11] Jayachandran, The Journal of Chemical Physics 125 (8) pp 084901– (2006) · doi:10.1063/1.2221680
[12] J PARALLEL DISTRIB COMPUT 63 pp 551– (2003) · Zbl 1059.68526 · doi:10.1016/S0743-7315(03)00002-9
[13] Computer Physics Communications 153 pp 340– (2003) · Zbl 1196.76064 · doi:10.1016/S0010-4655(03)00200-5
[14] Journal of Biological Chemistry 271 pp 33 231– (1996) · doi:10.1074/jbc.271.52.33231
[15] Computer Physics Communications 178 pp 894– (2008) · Zbl 1196.76008 · doi:10.1016/j.cpc.2008.02.013
[16] Prabu-Jeyabalan, Structure (London) 10 (3) pp 369– (2002) · doi:10.1016/S0969-2126(02)00720-7
[17] Annual Review of Fluid Mechanics 34 (1) pp 233– (2002) · Zbl 0982.00031 · doi:10.1146/annurev.fluid.34.082401.191847
[18] Sadiq, Journal of chemical information and modeling 48 (9) pp 1909– (2008) · doi:10.1021/ci8000937
[19] PHIL TRANS R SOC A 366 pp 3199– (2008) · doi:10.1098/rsta.2008.0100
[20] Saksena, Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces and Biophysical 112 (10) pp 2950– (2008) · doi:10.1021/jp0731506
[21] PHIL TRANS R SOC A 364 pp 2635– (2006) · doi:10.1098/rsta.2006.1844
[22] Shirts, Science 290 (5498) pp 1903– (2000) · doi:10.1126/science.290.5498.1903
[23] Langmuir 18 pp 7384– (2002) · doi:10.1021/la0259555
[24] Stoica, Journal of the American Chemical Society 130 (8) pp 2639– (2008) · doi:10.1021/ja0779250
[25] PNAS 98 pp 14 937– (2001) · doi:10.1073/pnas.251265598
[26] Wang, Annual review of biophysics and biomolecular structure 30 (1) pp 211– (2001) · doi:10.1146/annurev.biophys.30.1.211
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.