zbMATH — the first resource for mathematics

A socio-cognitive model of trust using argumentation theory. (English) Zbl 1264.68182
Summary: Trust is used to minimise the uncertainty in the interactions of the agents especially in case of conflicting information from different sources. Besides conflicts among information there can also be conflicts about the trust attributed to the information sources. In this paper, we discuss how to reason about trust using argumentation theory, so to express also the possibly conflicting motivations about trust and distrust. The methodology of meta-argumentation allows us to model both information and information sources as arguments and to argue about them. First, we present a model for representing evidence provided as motivation of the sources’ arguments to represent the need of a trusted source to believe the information, and we show how to model the information sources in a way that it can be argued whether they should be considered trustworthy or not. Second, we provide a focused representation of trust about the sources in which trust concerns not only the sources but also the information items and the relation with other information. Third, we introduce the feedback on the trustworthiness of the sources and the information items they propose, such that an attack to the trustworthiness of the items feeds back on the trustworthiness of the source. Finally, we distinguish two dimensions of trust, namely competence and sincerity, and we present a formal way to express those dimensions, only informally described in the socio-cognitive models of trust.

68T37 Reasoning under uncertainty in the context of artificial intelligence
68T42 Agent technology and artificial intelligence
Full Text: DOI
[1] Baroni, P.; Cerutti, F.; Giacomin, M.; Guida, G., AFRA: argumentation framework with recursive attacks, Internat. J. Approx. Reason., 52, 1, 19-37, (2011) · Zbl 1211.68433
[2] Baroni, P.; Giacomin, M., On principle-based evaluation of extension-based argumentation semantics, Artif. Intell., 171, 10-15, 675-700, (2007) · Zbl 1168.68559
[3] Bochman, A., A causal approach to nonmonotonic reasoning, Artif. Intell., 160, 1-2, 105-143, (2004) · Zbl 1086.68125
[4] Boella, G.; Gabbay, D. M.; van der Torre, L.; Villata, S., Meta-argumentation modelling I: methodology and techniques, Studia Logica, 93, 2-3, 297-355, (2009) · Zbl 1185.68664
[5] Boella, G.; Gabbay, D. M.; van der Torre, L.; Villata, S., Support in abstract argumentation, (Computational Models of Argument, 3rd International Conference (COMMA-2010), (2010), IOS Press), 40-51
[6] Boella, G.; van der Torre, L.; Villata, S., On the acceptability of meta-arguments, (Intelligent Agent Technology, 2009 IEEE/WIC/ACM International Conference (IAT-2009), (2009), IEEE), 259-262
[7] Castelfranchi, C.; Falcone, R., Trust theory: A socio-cognitive and computational model, (2010), Wiley
[8] Castelfranchi, C., Representation and integration of multiple knowledge sources: issues and questions, (Cantoni, V.; Di Gesù, V.; Setti, A.; Tegolo, D., Human & Machine Perception: Information Fusion, (1997), Plenum Press), 1-24
[9] Cayrol, C.; Lagasquie-Schiex, M.-C., Coalitions of arguments: a tool for handling bipolar argumentation frameworks, Int. J. Intell. Syst., 25, 1, 83-109, (2010) · Zbl 1185.68704
[10] Coste-Marquis, S.; Devred, C.; Konieczny, S.; Lagasquie-Schiex, M.-C.; Marquis, P., On the merging of dung’s argumentation systems, Artif. Intell., 171, 10-15, 730-753, (2007) · Zbl 1168.68563
[11] C. da Costa Pereira, A. Tettamanzi, S. Villata, Changing ones mind: erase or rewind?, in: Artificial Intelligence, 22nd International Joint Conference (IJCAI-2011), 2011, pp. 164-171.
[12] Dix, J.; Parsons, S.; Prakken, H.; Simari, G. R., Research challenges for argumentation, Comput. Sci. - R&D, 23, 1, 27-34, (2009)
[13] Dung, P. M., On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games, Artif. Intell., 77, 2, 321-358, (1995) · Zbl 1013.68556
[14] Gabbay, D. M., Fibring argumentation frames, Studia Logica, 93, 2-3, 231-295, (2009) · Zbl 1185.68670
[15] D. Gambetta, Can we trust them? in: Trust: Making and Breaking Cooperative Relations, Blackwell 1990, pp. 213-238.
[16] Gordon, T. F.; Prakken, H.; Walton, D., The carneades model of argument and burden of proof, Artif. Intell., 171, 10-15, 875-896, (2007) · Zbl 1168.68566
[17] Gorogiannis, N.; Hunter, A.; Williams, M., An argument-based approach to reasoning with clinical knowledge, Internat. J. Approx. Reason., 51, 1, 1-22, (2009) · Zbl 1209.68523
[18] Jakobovits, H.; Vermeir, D., Robust semantics for argumentation frameworks, J. Log. Comput., 9, 2, 215-261, (1999) · Zbl 0933.68088
[19] Liau, C.-J., Belief, information acquisition, and trust in multi-agent systems – a modal logic formulation, Artif. Intell., 149, 1, 31-60, (2003) · Zbl 1082.68822
[20] Lorini, E.; Demolombe, R., From binary trust to graded trust in information sources: a logical perspective, (Trust in Agent Societies, 11th International Workshop (TRUST-2008), Lecture Notes in Computer Science, vol. 5396, (2008), Springer), 205-225
[21] P.-A. Matt, M. Morge, F. Toni, Combining statistics and arguments to compute trust, in: Autonomous Agents and Multiagent Systems, 9th International Conference (AAMAS-2010), 2010, pp. 209-216.
[22] Modgil, S.; Bench-Capon, T. J.M., Metalevel argumentation, J. Log. Comput., 21, 6, 959-1003, (2011) · Zbl 1228.68047
[23] S. Parsons, P. McBurney, E. Sklar, Reasoning about trust using argumentation: a position paper, in: Argumentation in Multi-Agent Systems, 7th International Workshop (ArgMAS-2010), 2010, pp. 47-59.
[24] S. Parsons, Y. Tang, E. Sklar, P. McBurney, K. Cai, Argumentation-based reasoning in agents with varying degrees of trust, in: Autonomous Agents and Multiagent Systems, 10th International Conference (AAMAS-2011), 2011, pp. 879-886.
[25] Prade, H., A qualitative bipolar argumentative view of trust, (Scalable Uncertainty Management, First International Conference (SUM-2007), Lecture Notes in Computer Science, vol. 4772, (2007), Springer), 268-276
[26] Prakken, H., An abstract framework for argumentation with structured arguments, Argument Comput., 1, 93-124, (2010)
[27] (Rahwan, I.; Simari, G., Argumentation in Artificial Intelligence, (2009), Springer)
[28] Stranders, R.; de Weerdt, M.; Witteveen, C., Fuzzy argumentation for trust, (Computational Logic in Multi-Agent Systems, 8th International Workshop (CLIMA VIII), Lecture Notes in Computer Science, vol. 5056, (2007), Springer), 214-230 · Zbl 1175.68466
[29] Y. Tang, K. Cai, E. Sklar, P. McBurney, S. Parsons, A system of argumentation for reasoning about trust, in: Multi-Agent Systems, 8th European Workshop (EUMAS-2010), 2010, pp. 52-64.
[30] Villata, S.; Boella, G.; Gabbay, D. M.; van der Torre, L., Arguing about the trustworthiness of the information sources, (Symbolic and Quantitative Approaches to Reasoning with Uncertainty, 11th European Conference (ECSQARU-2011), Lecture Notes in Computer Science, vol. 6717, (2011), Springer), 74-85 · Zbl 1341.68271
[31] S. Villata, G. Boella, L. van der Torre, Argumentation patterns, in: Argumentation in Multi-Agent Systems, 8th International Workshop (ArgMAS-2011), 2011, pp. 133-150.
[32] S. Villata, Meta-argumentation for multiagent systems: coalition formation, merging views, subsumption relation and dependence networks, Ph.D. Thesis, University of Turin, 2010.
[33] S. Villata, G. Boella, L. van der Torre, Attack Semantics for Abstract Argumentation, in: T. Walsh (Ed.), Proceedings of the 22nd International Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, IJCAI/AAAI, 2011, pp. 406-413.
[34] Walton, D.; Reed, C.; Macagno, F., Argumentation schemes, (2008), Cambridge University Press
[35] Y. Wang, M.P. Singh, Formal trust model for multiagent systems, in: Artificial Intelligence, 20th International Joint Conference (IJCAI-2007), 2007, pp. 1551-1556.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.