×

Binomial collisions and near collisions. (English) Zbl 1414.11026

Summary: We describe efficient algorithms to search for cases in which binomial coefficients are equal or almost equal, give a conjecturally complete list of all cases where two binomial coefficients differ by 1, and give some identities for binomial coefficients that seem to be new.

MSC:

11B65 Binomial coefficients; factorials; \(q\)-identities
05A10 Factorials, binomial coefficients, combinatorial functions

Software:

Magma; SageMath
PDFBibTeX XMLCite
Full Text: arXiv Link

References:

[1] H.L. Abbott, P. Erd˝os, and D. Hanson, On the number of times an integer occurs as a binomial coefficient, Amer. Math. Monthly 81 (1974), 256-261. · Zbl 0276.05005
[2] ‘E.T. Avanesov, Solution of a problem on figurate numbers (Russian), Acta Arith. 12 (1966), 409-420. · Zbl 0153.06403
[3] B.J. Birch and H.P.F. Swinnerton-Dyer, Note on a problem of Chowla, Acta Arith. 5 (1959), 417-423. · Zbl 0091.04301
[4] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), 235-265. · Zbl 0898.68039
[5] B. Brindza, On a special superelliptic equation, Publ. Math. Debrecen 39 (1991), 159-162. · Zbl 0749.11024
[6] Y. Bugeaud, M. Mignotte, S. Siksek, M. Stoll, and S. Tengely, Integral points on hyperelliptic curves, Algebra Number Theory 2 (2008), 859-885. · Zbl 1168.11026
[7] R. Daublebsky von Sterneck, ¨Uber die Anzahl inkongruenter Werte, die eine ganze Funktion dritten Grades annimmt, Sitzungsberichte der kaiserlichen Akademie der Wissenschaften, Wien, Bd. CXVI, Heft V, Abteilung IIa (1907), 895-904. · JFM 38.0240.03
[8] G. Faltings, Endlichkeitss¨atze f¨ur abelsche Variet¨aten ¨uber Zahlk¨orpern, Invent. Math. 73 (1983), 349-366.
[9] D. Kane, New bounds on the number of representations of T as a binomial coefficient, Integers 4 (2004), #A07. ⇣p⌘ · Zbl 1093.11010
[10] D.A. Lind, The quadratic fieldQ5and a certain diophantine equation, Fibonacci Quart. 6 (1968), 86-93.
[11] L.J. Mordell, On the integer solutions of y(y + 1) = x(x + 1)(x + 2), Pacific J. Math. 13 (1963), 1347-1351. · Zbl 0124.27402
[12] ´A. Pint´er, A note on the diophantine equationx4=y2, Publ. Math. Debrecen 47 (1995), 411-415.
[13] SageMath, the Sage Mathematics Software System (Version 7.5.1), The Sage Developers, 2017, http://www.sagemath.org. INTEGERS: 17 (2017)8
[14] D. Singmaster, How often does an integer occur as a binomial coefficient, Amer. Math. Monthly 78 (1971), 385-386.
[15] D. Singmaster, Repeated binomial coefficients and Fibonacci numbers, Fibonacci Quart. 13 (1975), 295-298. · Zbl 0324.05007
[16] R.J. Stroeker and B.M.M. de Weger, Elliptic binomial Diophantine equations, Math. Comp. 68 No. 227 (1999), 1257-1281. · Zbl 0920.11014
[17] R.J. Stroeker and B.M.M. de Weger, Solving elliptic Diophantine equations: the general cubic case, Acta Arith. 87 (1999), 339-365. · Zbl 0930.11015
[18] C.A. Tovey, Multiple occurrences of binomial coefficients, Fibonacci Quart. 23 (1985), 356– 358. · Zbl 0573.05004
[19] B.M.M. de Weger, A binomial Diophantine equation, Q. J. Math. 47 (1996), 221-231. · Zbl 0863.11022
[20] B.M.M. de Weger, Equal binomial coefficients: Some elementary considerations, J. Number Theory 63 (1997), 373-386. · Zbl 0873.11023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.