×

An efficient algorithm to compute the exponential of skew-Hermitian matrices for the time integration of the Schrödinger equation. (English) Zbl 07478804

Summary: We present a practical algorithm to approximate the exponential of skew-Hermitian matrices up to round-off error based on an efficient computation of Chebyshev polynomials of matrices and the corresponding error analysis. It is based on Chebyshev polynomials of degrees 2, 4, 8, 12 and 18 which are computed with only 1, 2, 3, 4 and 5 matrix-matrix products, respectively. For problems of the form \(\exp(-iA)\), with \(A\) a real and symmetric matrix, an improved version is presented that computes the sine and cosine of \(A\) with a reduced computational cost. The theoretical analysis, supported by numerical experiments, indicates that the new methods are more efficient than schemes based on rational Padé approximants and Taylor polynomials for all tolerances and time interval lengths. The new procedure is particularly recommended to be used in conjunction with exponential integrators for the numerical time integration of the Schrödinger equation.

MSC:

65-XX Numerical analysis
81-XX Quantum theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Geometric Integration Research Group. Available from: http://www.gicas.uji.es/Research/ExpSkewHermitian.html.
[2] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions (1965), Dover
[3] Al-Mohy, A. H.; HIgham, N. J.; Renton, S. D., New algorithms for computing the sine and cosine separately or simultaneously, SIAM J. Sci. Comput., 37, A456-A487 (2015) · Zbl 1315.65045
[4] Alvermann, A.; Fehske, H., High-order commutator-free exponential time-propagation of driven quantum systems, J. Comput. Phys., 230, 5930-5956 (2011) · Zbl 1219.81091
[5] Auckenthaler, T.; Bader, M.; Huckle, T.; Spörl, A.; Waldherr, D. K., Matrix exponentials and parallel prefix computation in a quantum control problem, Parallel Comput., 36, 359-369 (2010) · Zbl 1208.68233
[6] Bader, P.; Blanes, S.; Casas, F., An improved algorithm to compute the exponential of a matrix (2017), [math.NA] arXiv:1710.10989
[7] Bader, P.; Blanes, S.; Casas, F., Computing the matrix exponential with an optimized taylor polynomial approximation, Mathematics, 7, 1174 (2019)
[8] Blanes, S.; Casas, F.; Murua, A., An efficient algorithm based on splitting for the time integration of the Schrödinger equation, J. Comput. Phys., 303, 396-412 (2015) · Zbl 1349.65393
[9] Blanes, S.; Casas, F.; Oteo, J.; Ros, J., The magnus expansion and some of its applications, Phys. Rep., 470, 151-238 (2009)
[10] Blanes, S.; Casas, F.; Ros, J., High order optimized geometric integrators for linear differential equations, BIT, 42, 262-284 (2002) · Zbl 1008.65045
[11] Blanes, S.; Casas, F.; Thalhammer, M., High-order commutator-free quasi-magnus exponential integrators for non-autonomous linear evolution equations, Comput. Phys. Comm., 220, 243-262 (2017) · Zbl 1411.81027
[12] Blanes, S.; Moan, P., Fourth- and sixth-order commutator-free magnus integrators for linear and non-linear dynamical systems, Appl. Numer. Math., 56, 1519-1537 (2006) · Zbl 1103.65129
[13] Dieci, L.; Russell, R. D.; van Vleck, E. S., Unitary integrators and applications to continuous orthonormalization techniques, SIAM J. Numer. Anal., 31, 1, 261-281 (1994) · Zbl 0815.65096
[14] Diele, F.; Lopez, L.; Peluso, R., The Cayley transform in the numerical solution of unitary differential systems, Appl. Numer. Math., 8, 317-334 (1998) · Zbl 0904.65069
[15] Gil, A.; Segura, J.; Temme, N., Numerical Methods for Special Functions (2007), SIAM · Zbl 1144.65016
[16] Higham, N., The scaling and squaring method for the matrix exponential revisited, SIAM J. Matrix Anal. Appl., 26, 1179-1193 (2005) · Zbl 1081.65037
[17] Higham, N., Functions of Matrices (2008), SIAM · Zbl 1167.15001
[18] Higham, N.; Al-Mohy, A., Computing matrix functions, Acta Numer., 19, 159-208 (2010) · Zbl 1242.65090
[19] Hochbruck, M.; Ostermann, A., Exponential integrators, Acta Numer., 19, 209-286 (2010) · Zbl 1242.65109
[20] Huang, T.; Rau, R., A simple estimation for the spectral radius of (block) H-matrices, J. Comput. Appl. Math., 177, 455-459 (2005) · Zbl 1073.15016
[21] Kyoseva, E.; Vitanova, N.; Shore, B., Physical realization of coupled Hilbert-space mirrors for quantum-state engineering, J. Modern Optics, 54, 2237 (2007) · Zbl 1127.81316
[22] Lubich, C., From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis (2008), European Mathematical Society · Zbl 1160.81001
[23] Olver, F.; Lozier, D.; Boisvert, R.; Clark, C., NIST Handbook of Mathematical Functions (2010), Cambridge University Press · Zbl 1198.00002
[24] Rosen, N.; Zener, C., Double Stern-Gerlach experiment and related collision phenomena, Phys. Rev., 40, 502-507 (1932) · Zbl 0004.42704
[25] Sastre, J., Efficient evaluation of matrix polynomials, Linear Algebra Appl., 539, 229-250 (2018) · Zbl 1432.65029
[26] Sastre, J.; Ibáñez, J.; Defez, E., Boosting the computation of the matrix exponential, Appl. Math. Comput., 340, 206-220 (2019) · Zbl 1429.65093
[27] Seydaoğlu, M.; Bader, P.; Blanes, S.; Casas, F., Computing the matrix sine and cosine simultaneously with a reduced number of products, Appl. Numer. Math., 163, 96-107 (2021) · Zbl 1460.65047
[28] Sidje, R. B., Expokit: a software package for computing matrix exponentials, ACM Trans. Math. Softw., 24, 130-156 (1998) · Zbl 0917.65063
[29] Trefethen, L., Approximation Theory and Approximation Practice (2013), SIAM · Zbl 1264.41001
[30] Walker, R.; Preston, K., Quantum versus classical dynamics in the treatment of multiple photon excitation of the anharmonic oscillator, J. Chem. Phys., 67 (1977)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.