×

zbMATH — the first resource for mathematics

Solution of Vandermonde systems of equations. (English) Zbl 0221.65054

MSC:
65F05 Direct numerical methods for linear systems and matrix inversion
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] C. Ballester and V. Pereyra, On the construction of discrete approximations to linear differential expressions, Math. Comp. 21 (1967), 297 – 302. · Zbl 0168.14103
[2] Walter Gautschi, On inverses of Vandermonde and confluent Vandermonde matrices, Numer. Math. 4 (1962), 117 – 123. · Zbl 0108.12501 · doi:10.1007/BF01386302 · doi.org
[3] J. W. Jerome & L. L. Schumaker, A Note on Obtaining Natural Spline Functions by the Abstract Approach of Laurent, MRC Technical Report #776, University of Wisconsin, Madison, Wis., 1967. · Zbl 0185.40901
[4] J. N. Lyness and C. B. Moler, Van der Monde systems and numerical differentiation, Numer. Math. 8 (1966), 458 – 464. · Zbl 0141.33404 · doi:10.1007/BF02166671 · doi.org
[5] J. F. Traub, Associated polynomials and uniform methods for the solution of linear problems, SIAM Rev. 8 (1966), 277 – 301. · Zbl 0249.65018 · doi:10.1137/1008061 · doi.org
[6] J. F. Traub, Iterative methods for the solution of equations, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. · Zbl 0121.11204
[7] G. Galimberti and V. Pereyra, Numerical differentiation and the solution of multidimensional Vandermonde systems, Math. Comp. 24 (1970), 357 – 364. · Zbl 0215.27204
[8] G. Galimberti and V. Pereyra, Solving confluent Vandermonde systems of Hermite type, Numer. Math. 18 (1971/72), 44 – 60. · Zbl 0217.52601 · doi:10.1007/BF01398458 · doi.org
[9] S.-Å. Gustafson, Rapid Computation of Interpolation Formulae and Mechanical Quadrature Rules, Technical Report CS #70-152, Stanford University, Stanford, Calif., 1970.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.