×

Intermittency in crystal plasticity informed by lattice symmetry. (English) Zbl 1332.74011

Summary: We develop a nonlinear, three-dimensional phase field model for crystal plasticity which accounts for the infinite and discrete symmetry group \(G\) of the underlying periodic lattice. This generates a complex energy landscape with countably-many \(G\)-related wells in strain space, whereon the material evolves by energy minimization under the loading through spontaneous slip processes inducing the creation and motion of dislocations without the need of auxiliary hypotheses. Multiple slips may be activated simultaneously, in domains separated by a priori unknown free boundaries. The wells visited by the strain at each position and time, are tracked by the evolution of a \(G\)-valued discrete plastic map, whose non-compatible discontinuities identify lattice dislocations. The main effects in the plasticity of crystalline materials at microscopic scales emerge in this framework, including the long-range elastic fields of possibly interacting dislocations, lattice friction, hardening, band-like vs. complex spatial distributions of dislocations. The main results concern the scale-free intermittency of the flow, with power-law exponents for the slip avalanche statistics which are significantly affected by the symmetry and the compatibility properties of the activated fundamental shears.

MSC:

74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
74E15 Crystalline structure
74N30 Problems involving hysteresis in solids

Software:

plfit
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Acharya, A.: Jump condition on GND evolution as a constraint on slip transmission at grain boundaries. Philos. Mag. 87, 1349-1359 (2007) · doi:10.1080/14786430600951537
[2] Alava, M.J., Laurson, L., Zapperi, S.: Review: Crackling noise in plasticity. Eur. Phys. J. Spec. Top. 223, 2353-2367 (2014) · doi:10.1140/epjst/e2014-02269-8
[3] Ariza, M.P., Ortiz, M.: Discrete crystal elasticity and discrete dislocations in crystals. Arch. Ration. Mech. Anal. 178, 149-226 (2005) · Zbl 1115.74012 · doi:10.1007/s00205-005-0391-4
[4] Asaro, R.J.: Crystal plasticity. J. Appl. Mech. 50, 921-934 (1983) · Zbl 0557.73033 · doi:10.1115/1.3167205
[5] Balandraud, X., Barrera, N., Biscari, P., Grédiac, M., Zanzotto, G.: Strain intermittency in shape-memory alloys. Phys. Rev. B 91, 174111 (2015) · doi:10.1103/PhysRevB.91.174111
[6] Bhattacharya, K., Conti, S., Zanzotto, G., Zimmer, J.: Crystal symmetry and the reversibility of martensitic transformations. Nature 428, 55-59 (2004) · doi:10.1038/nature02378
[7] Bilby, B.A., Bullough, R., de Grinberg, D.K.: General theory of surface dislocations. Discuss. Faraday Soc. 38, 61-68 (1964) · doi:10.1039/df9643800061
[8] Bortoloni, L., Cermelli, P.: Dislocation patterns and work-hardening in crystalline plasticity. J. Elast. 76, 113-138 (2004) · Zbl 1060.74016 · doi:10.1007/s10659-005-0670-1
[9] Brinckmann, S., Kim, J.-Y., Greer, J.R.: Fundamental differences in mechanical behavior between two types of crystals at the nanoscale. Phys. Rev. Lett. 100, 155502 (2008) · doi:10.1103/PhysRevLett.100.155502
[10] Cermelli, C., Gurtin, M.E.: The dynamics of solid-solid phase transitions 2. Incoherent interfaces. Arch. Ration. Mech. Anal. 127, 41-99 (1994) · Zbl 0807.73006 · doi:10.1007/BF01845217
[11] Cermelli, P., Gurtin, M.E.: On the characterization of geometrically necessary dislocations in finite plasticity. J. Mech. Phys. Solids 49, 1539-1568 (2001) · Zbl 0989.74013 · doi:10.1016/S0022-5096(00)00084-3
[12] Chaari, N., Clouet, E., Rodney, D.: First-principles study of secondary slip in zirconium. Phys. Rev. Lett. 112, 075504 (2014) · doi:10.1103/PhysRevLett.112.075504
[13] Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM Rev. 51, 661-703 (2009) · Zbl 1176.62001 · doi:10.1137/070710111
[14] Conti, S., Zanzotto, G.: A variational model for reconstructive phase transformations in crystals, and their relation to dislocations and plasticity. Arch. Ration. Mech. Anal. 173, 69-88 (2004) · Zbl 1083.74039 · doi:10.1007/s00205-004-0311-z
[15] Cottrell, A.H., Bilby, B.A.: Dislocation theory of yielding and strain ageing of iron. Proc. Phys. Soc. A 62, 49-62 (1949) · doi:10.1088/0370-1298/62/1/308
[16] Csikor, F.F., Motz, C., Weygand, D., Zaiser, M., Zapperi, S.: Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale. Science 318, 251-254 (2007) · doi:10.1126/science.1143719
[17] Dahmen, K.A., Ben-Zion, Y., Uhl, J.T.: Micromechanical model for deformation in solids with universal predictions for stress-strain curves and slip avalanches. Phys. Rev. Lett. 102, 175501 (2009) · doi:10.1103/PhysRevLett.102.175501
[18] Denoual, C., Caucci, A.M., Soulard, L., Pellegrini, Y.-P.: Phase-field reaction-pathway kinetics of martensitic transformations in a model \(Fe3\text{Fe}_3 Ni\) alloy. Phys. Rev. Lett. 105, 035703 (2010) · doi:10.1103/PhysRevLett.105.035703
[19] Devincre, B., Hoc, T., Kubin, L.: Dislocation mean free paths and strain hardening of crystals. Science 320, 1745-1748 (2008) · doi:10.1126/science.1156101
[20] Dezerald, L., Ventelon, L., Clouet, E., Denoual, C., Rodney, D., Willaime, F.: Ab initio modeling of the two-dimensional energy landscape of screw dislocations in bcc transition metals. Phys. Rev. B 89, 024104 (2014) · doi:10.1103/PhysRevB.89.024104
[21] Dimiduk, D.M., Woodward, C., LeSar, R., Uchic, M.D.: Scale-free intermittent flow in crystal plasticity. Science 312, 1188-1190 (2006) · doi:10.1126/science.1123889
[22] Ding, X., Zhao, Z., Lookman, T., Saxena, A., Salje, E.K.H.: High junction and twin boundary densities in driven dynamical systems. Adv. Mater. 24, 5385-5389 (2012) · doi:10.1002/adma.201200986
[23] Ericksen, J.L.: Some phase transitions in crystals. Arch. Ration. Mech. Anal. 73, 99-124 (1980) · Zbl 0429.73007 · doi:10.1007/BF00258233
[24] Fedelich, B., Zanzotto, G.: Hysteresis in discrete systems of possibly interacting elements with a double-well energy. J. Nonlinear Sci. 2, 319-342 (1992) · Zbl 0814.73004 · doi:10.1007/BF01208928
[25] Fressengeas, C., Beaudoin, A.J., Entemeyer, D., Lebedkina, T., Lebyodkin, M., Taupin, V.: Dislocation transport and intermittency in the plasticity of crystalline solids. Phys. Rev. B 79, 014108 (2009) · doi:10.1103/PhysRevB.79.014108
[26] Gu, R., Ngan, A.H.W.: Dislocation arrangement in small crystal volumes determines power-law size dependence of yield strength. J. Mech. Phys. Solids 61, 1531-1542 (2013) · doi:10.1016/j.jmps.2012.10.002
[27] Gurtin, M.E., Fried, E., Anand, L.: The Mechanics and Thermodynamics of Continua. Cambridge University Press, Cambridge (2010) · doi:10.1017/CBO9780511762956
[28] Hirth, J., Lothe, J.: Theory of Dislocations. Wiley, New York (1982)
[29] Ispanovity, P.D., Laurson, L., Zaiser, M., Groma, I., Zapperi, S., Alava, M.J.: Avalanches in 2D dislocation systems: Plastic yielding is not depinning. Phys. Rev. Lett. 112, 235501 (2014) · doi:10.1103/PhysRevLett.112.235501
[30] Koslowski, M., Ortiz, M.: A multi-phase field model of planar dislocation networks. Model. Simul. Mater. Sci. Eng. 12, 1087-1097 (2004) · doi:10.1088/0965-0393/12/6/003
[31] Koslowski, M., LeSar, R., Thomson, R.: Dislocation structures and the deformation of materials. Phys. Rev. Lett. 93, 265503 (2004) · Zbl 1123.74302 · doi:10.1103/PhysRevLett.93.265503
[32] Levitas, V.I.: Thermodynamically consistent phase field approach to phase transformations with interface stresses. Acta Mater. 61, 4305-4319 (2013) · doi:10.1016/j.actamat.2013.03.034
[33] Levitas, V.I.: Phase-field theory for martensitic phase transformations at large strains. Int. J. Plast. 49, 85-118 (2013) · doi:10.1016/j.ijplas.2013.03.002
[34] Levitas, V.I.: Phase field approach to martensitic phase transformations with large strains and interface stresses. J. Mech. Phys. Solids 70, 154-189 (2014) · Zbl 1328.74003 · doi:10.1016/j.jmps.2014.05.013
[35] Levitas, V.I., Javanbakht, M.: Advanced phase-field approach to dislocation evolution. Phys. Rev. B 86, 140101(R) (2012) · doi:10.1103/PhysRevB.86.140101
[36] Mamivand, M., Asle Zaeem, M., El Kadiri, H.: Shape memory effect and pseudoelasticity behavior in tetragonal zirconia polycrystals: A phase field study. Int. J. Plast. 60, 71-86 (2014) · doi:10.1016/j.ijplas.2014.03.018
[37] Miguel, M.-C., Vespignani, A., Zaiser, M., Zapperi, S.: Dislocation jamming and Andrade creep. Phys. Rev. Lett. 89, 165501 (2002) · doi:10.1103/PhysRevLett.89.165501
[38] Miller, R.E., Rodney, D.: On the nonlocal nature of dislocation nucleation during nanoindentation. J. Mech. Phys. Solids 56, 1203-1223 (2008) · Zbl 1171.74397 · doi:10.1016/j.jmps.2007.10.005
[39] Moretti, P., Miguel, M.-C., Zaiser, M., Zapperi, S.: Depinning transition of dislocation assemblies: Pileups and low-angle grain boundaries. Phys. Rev. B 69, 214103 (2004) · doi:10.1103/PhysRevB.69.214103
[40] Niemann, R., Baró, J., Heczko, O., Schultz, L., Fähler, S., Vives, E., Mañosa, Ll., Planes, A.: Tuning avalanche criticality: Acoustic emission during the martensitic transformation of a compressed Ni-Mn-Ga single crystal. Phys. Rev. B 86, 214101 (2012) · doi:10.1103/PhysRevB.86.214101
[41] Niemann, R., Kopecek, J., Heczko, O., Romberg, J., Schultz, L., Fähler, S., Vives, E., Mañosa, Ll., Planes, A.: Localizing sources of acoustic emission during the martensitic transformation. Phys. Rev. B 89, 214118 (2014) · doi:10.1103/PhysRevB.89.214118
[42] Perez-Reche, F.-J., Truskinovsky, L., Zanzotto, G.: Training-induced criticality in martensites. Phys. Rev. Lett. 99, 075501 (2007) · doi:10.1103/PhysRevLett.99.075501
[43] Pitteri, M., Zanzotto, G.: Continuum Models for Phase Transitions and Twinning in Crystals. Chapman & Hall, London (2002) · Zbl 1019.80001 · doi:10.1201/9781420036145
[44] Planes, A., Mañosa, Ll., Vives, E.: Acoustic emission in martensitic transformations. J. Alloys Compd. 577, S699-S704 (2013) · doi:10.1016/j.jallcom.2011.10.082
[45] Reina, C., Conti, S.: Kinematic description of crystal plasticity in the finite kinematic framework: A micromechanical understanding of F=FrFp \(\mathbf{F}=\mathbf{F}_{\text{r}} \mathbf{F}_{\text{p}} \). J. Mech. Phys. Solids 67, 40-61 (2014) · Zbl 1323.74018 · doi:10.1016/j.jmps.2014.01.014
[46] Rodney, D.: Activation enthalpy for kink-pair nucleation on dislocations: Comparison between static and dynamic atomic-scale simulations. Phys. Rev. B 76, 144108 (2007) · doi:10.1103/PhysRevB.76.144108
[47] Rodney, D., Proville, D.: Stress-dependent Peierls potential: Influence on kink-pair activation. Phys. Rev. B 79, 094108 (2009) · doi:10.1103/PhysRevB.79.094108
[48] Rodney, D., Le Bouar, Y., Finel, A.: Phase field methods and dislocations. Acta Mater. 51, 17-30 (2003) · doi:10.1016/S1359-6454(01)00379-2
[49] Salman, O.U., Truskinovsky, L.: Minimal integer automaton behind crystal plasticity. Phys. Rev. Lett. 106, 175503 (2011) · doi:10.1103/PhysRevLett.106.175503
[50] Salman, O.U., Truskinovsky, L.: On the critical nature of plastic flow: One and two dimensional models. Int. J. Eng. Sci. 59, 219-254 (2012) · Zbl 06923664 · doi:10.1016/j.ijengsci.2012.03.012
[51] Shen, C., Wang, Y.: Incorporation of γ \(\gamma \)-surface to phase field model of dislocations: Simulating dislocation dissociation in fcc crystals. Acta Mater. 52, 683-691 (2004) · doi:10.1016/j.actamat.2003.10.014
[52] Song, Y., Chen, X., Dabade, V., Shield, T.W., James, R.D.: Enhanced reversibility and unusual microstructure of a phase-transforming material. Nature 502, 85-88 (2013) · doi:10.1038/nature12532
[53] Steinbach, I., Pezzolla, F., Nestler, B., Seeßelberg, M., Prieler, R., Schmitz, G.J., Rezende, J.L.L.: A phase field concept for multiphase systems. Physica D 94, 135-147 (1996) · Zbl 0885.35148 · doi:10.1016/0167-2789(95)00298-7
[54] Toth, L.Z., Szabo, S., Daroczi, L., Beke, D.L.: Calorimetric and acoustic emission study of martensitic transformation in single-crystalline \(Ni2\text{Ni}_2\) MnGa alloys. Phys. Rev. B 90, 224103 (2014) · doi:10.1103/PhysRevB.90.224103
[55] Truskinovsky, L., Vainchtein, A.: The origin of nucleation peak in transformational plasticity. J. Mech. Phys. Solids 52, 1421-1446 (2004) · Zbl 1079.74012 · doi:10.1016/j.jmps.2003.09.034
[56] Tsekenis, G., Uhl, J.T., Goldenfeld, N., Dahmen, K.A.: Determination of the universality class of crystal plasticity. Europhys. Lett. 101, 36003 (2013) · doi:10.1209/0295-5075/101/36003
[57] Uchic, M.D., Shade, P.A., Dimiduk, D.M.: Plasticity of micrometer-scale single crystals in compression. Annu. Rev. Mater. Res. 39, 361-386 (2009) · doi:10.1146/annurev-matsci-082908-145422
[58] Wang, Y., Li, J.: Phase field modeling of defects and deformation. Acta Mater. 58, 1212-1235 (2010) · doi:10.1016/j.actamat.2009.10.041
[59] Wang, Y.U., Jin, Y.M., Cuitiño, A.M., Khachaturyan, A.G.: Nanoscale phase field microelasticity theory of dislocations: Model and 3D simulations. Acta Mater. 49, 1847-1857 (2001) · doi:10.1016/S1359-6454(01)00075-1
[60] Wang, Y.U., Jin, Y.M., Khachaturyan, A.G.: Phase field microelasticity modeling of dislocation dynamics near free surface and in heteroepitaxial thin. Acta Mater. 51, 4209-4223 (2003) · doi:10.1016/S1359-6454(03)00238-6
[61] Weiss, J., Ben Rhouma, W., Richeton, T., Dechanel, S., Louchet, F., Truskinovsky, L.: From mild to wild fluctuations in crystal plasticity. Phys. Rev. Lett. 114, 105504 (2015) · doi:10.1103/PhysRevLett.114.105504
[62] Zaiser, M.: Scale invariance in plastic flow of crystalline solids. Adv. Phys. 55, 185-245 (2006) · doi:10.1080/00018730600583514
[63] Zhang, X., Pan, B., Shang, F.: Scale-free behavior of displacement bursts: Lower limit and scaling exponent. Europhys. Lett. 100, 16005 (2012) · doi:10.1209/0295-5075/100/16005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.