×

A dynamic mesh strategy applied to the simulation of flapping wings. (English) Zbl 1352.76088

Summary: A robust and efficient dynamic grid strategy based on an overset grid coupled with mesh deformation technique is proposed for simulating unsteady flow of flapping wings undergoing large geometrical displacement. The dynamic grid method was implemented using a hierarchical unstructured overset grid locally coupled with a fast radial basis function (RBF)-based mapping approach. The hierarchically organized overset grid allows transferring the grid resolution for multiple blocks and overlapping/embedding the meshes. The RBF-based mapping approach is particularly highlighted in this paper in view of its considerable computational efficiency compared with conventional RBF evaluation. The performance of the proposed dynamic mesh strategy is demonstrated by three typical unsteady cases, including a rotating rectangular block in a fixed domain, a relative movement between self-propelled fishes and the X-wing type flapping-wing micro air vehicle DelFly, which displays the clap-and-fling wing-interaction phenomenon on both sides of the fuselage. Results show that the proposed method can be applied to the simulation of flapping wings with satisfactory efficiency and robustness.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
76Z10 Biopropulsion in water and in air
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Thompson, Numerical Grid Generation, Foundations and Applications (1985)
[2] Jones, A Grid Generation System for Multi-disciplinary Design Optimization (1995) · doi:10.2514/6.1995-1689
[3] Gaitonde, A three dimensional moving mesh method for the calculation of unsteady transonic flows, The Aeronautical Journal 99 (984) pp 150– (1995)
[4] Reuther, Aerodynamic Shape Optimization of Complex Aircraft Configurations via an Adjoint Formulation (1996) · doi:10.2514/6.1996-94
[5] Byun, A Parallel, Multi-block, Moving Grid Method for Aeroelastic Applications on Full Aircraft (1998) · doi:10.2514/6.1998-4782
[6] Peskin, The immersed boundary method, Acta Numerica 11 pp 479– (2002) · Zbl 1123.74309 · doi:10.1017/S0962492902000077
[7] Batina, Unsteady Euler algorithm with unstructured dynamic mesh for complex-aircraft aerodynamic Analysis, AIAA Journal 29 (3) pp 327– (1991) · doi:10.2514/3.10583
[8] Farhat, Torsional springs for two-dimensional dynamic unstructured fluid meshes, Computer Methods in Applied Mechanics and Engineering 163 (1) pp 231– (1998) · Zbl 0961.76070 · doi:10.1016/S0045-7825(98)00016-4
[9] Blom, Considerations on the spring analogy, International Journal for Numerical Methods in Fluids 32 (6) pp 647– (2000) · Zbl 0981.76067 · doi:10.1002/(SICI)1097-0363(20000330)32:6<647::AID-FLD979>3.0.CO;2-K
[10] Murayama, Unstructured Dynamic Mesh for Large Movement and Deformation (2002)
[11] Chen, A Three-dimensional Boundary Element Method for CFD/CSD Grid Interfacing (1999) · doi:10.2514/6.1999-1213
[12] Baker, Mesh Deformation and Reconstruction for Time Evolving Domains (2001) · doi:10.2514/6.2001-2535
[13] Nielsen, Recent improvement in aerodynamic design optimization on unstructured meshes, AIAA Journal 40 (6) pp 1155– (2002) · doi:10.2514/2.1765
[14] Liu, Fast dynamic grid deformation based on Delaunay graph mapping, Journal of Computational Physics 211 (2) pp 405– (2006) · Zbl 1138.76405 · doi:10.1016/j.jcp.2005.05.025
[15] Rendall, Unified fluid-structure interpolation and mesh motion using radial basis functions, International Journal for Numerical Methods in Engineering 74 (10) pp 1519– (2008) · Zbl 1159.74457 · doi:10.1002/nme.2219
[16] Rendall, Reduced surface point selection options for efficient mesh deformation using radial basis functions, Journal of Computational Physics 229 (8) pp 2810– (2010) · Zbl 1302.76143 · doi:10.1016/j.jcp.2009.12.006
[17] Rendall, Parallel efficient mesh motion using radial basis functions with application on multi-bladed rotors, International Journal for Numerical Methods in Engineering 81 (1) pp 89– (2010) · Zbl 1183.76839
[18] Ahrem, A meshless spatial coupling scheme for large-scale fluid-structure interaction problems, Computer Modeling in Engineering and Science 12 (2) pp 121– (2006) · Zbl 1232.74122
[19] Beckert, Multivariate interpolation for fluid-structure-interaction problems using radial basis functions, Aerospace Science and Technology 5 (2) pp 125– (2001) · Zbl 1034.74018 · doi:10.1016/S1270-9638(00)01087-7
[20] Bos, Influence of wing kinematics on performance in hovering insect flight, Journal of Fluid Mechanics 594 (2008) pp 341– (2008) · Zbl 1159.76395
[21] Buhmann, Radial Basis Functions(1st edn) (2005)
[22] Wendland, Scattered Data Approximation(1st edn) (2005) · Zbl 1075.65021
[23] Bos, Radial basis function based mesh deformation applied to simulation of flow around flapping wings, Computers & Fluids 79 pp 167– (2013) · Zbl 06286575 · doi:10.1016/j.compfluid.2013.02.004
[24] Rendall, Efficient mesh motion techniques using radial basis functions with data reduction algorithms, Journal of Computational Physics 228 (17) pp 6231– (2009) · Zbl 1261.76035 · doi:10.1016/j.jcp.2009.05.013
[25] Rendall, Improved radial basis function fluid-structure coupling via efficient localised implementation, International Journal for Numerical Methods in Engineering 78 (10) pp 1188– (2009) · Zbl 1183.74368 · doi:10.1002/nme.2526
[26] Wang, Delaunay graph and radial basis function for fast quality mesh deformation, Journal of Computational Physics 294 pp 149– (2015) · Zbl 1349.65673 · doi:10.1016/j.jcp.2015.03.046
[27] Benek, A 3-D Chimera Grid Embedding Technique (1985) · doi:10.2514/6.1985-1523
[28] Nakahashi, Intergrid-boundary definition method for overset unstructured grid approach, AIAA Journal 38 (11) pp 2077– (2000) · doi:10.2514/2.869
[29] Togashi, Flow Simulation of Flapping Wings of an Insect Using Overset Unstructured Grid (2001) · doi:10.2514/6.2001-2619
[30] Meakin, Computations of the Unsteady Flow around a Generic Wing/Pylon/Finned-store Configuration (1992)
[31] Lijewski, Chimera-Eagle Store Separation (1992) · doi:10.2514/6.1992-4569
[32] Togashi, Shimbo Yuichi. Flow simulation of NAL experimental supersonic airplane/booster separation using overset unstructured grids, Computers & Fluids 30 (6) pp 673– (2001) · Zbl 1057.76042 · doi:10.1016/S0045-7930(00)00033-5
[33] Zhang, A block LU SGS implicit dual time stepping algorithm for hybrid dynamic meshes, Computers & Fluids 33 (7) pp 891– (2004) · Zbl 1070.76038 · doi:10.1016/j.compfluid.2003.10.004
[34] Meakin, Unsteady Simulation of the Viscous Flow about a V-22 Rotor and Wing in Hover (1992)
[35] Fast, Time-accurate Computation of Viscous Flow around Deforming Bodies Using Overset Grids (1992)
[36] Cai, A parallel viscous flow solver on multi-block overset grids, Computers & Fluids 35 (10) pp 1290– (2006) · Zbl 1177.76214 · doi:10.1016/j.compfluid.2005.02.006
[37] Meakin, Object X-rays for Cutting Holes in Composite Overset Structured Grids (2001) · doi:10.2514/6.2001-2537
[38] Meakin, Automatic O-dody Grid Generation for Domains of Arbitrary Size (2001)
[39] Bonet, An alternating digital tree (ADT) algorithm for 3D geometric searching and intersection problems, International Journal of Numerical Methods in Engineering 31 (1) pp 1– (1991) · Zbl 0825.73958 · doi:10.1002/nme.1620310102
[40] Boer, Mesh deformation based on radial basis function interpolation, Computers & Structures 85 pp 784– (2007) · doi:10.1016/j.compstruc.2007.01.013
[41] Barrett, Drag reduction in fish-like locomotion, Journal of Fluid Mechanics 392 pp 182– (1999) · Zbl 0938.76514 · doi:10.1017/S0022112099005455
[42] Croon, Design, aerodynamics, and autonomy of the DelFly, Bioinspiration and Biomimetics 7 (2) pp 1– (2012) · doi:10.1088/1748-3182/7/2/025003
[43] Percin, Flow Visualization in the Wake of the Flapping-wing MAV ’DelFly II’ in Forward Flight (2012) · doi:10.2514/6.2012-2664
[44] Tay, Analysis of Biplane Flapping Flight with Tail (2012) · doi:10.2514/6.2012-2968
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.