×

3D human posture segmentation by spectral clustering with surface normal constraint. (English) Zbl 1218.94009

Summary: We propose a new algorithm for partitioning human posture represented by 3D point clouds sampled from the surface of human body. The algorithm is formed as a constrained extension of the recently developed segmentation method, spectral clustering (SC). Two folds of merits are offered by the algorithm: (1) as a nonlinear method, it is able to deal with the situation that data (point cloud) are sampled from a manifold (the surface of human body) rather than the embedded entire 3D space; (2) by using constraints, it facilitates the integration of multiple similarities for human posture partitioning, and it also helps to reduce the limitations of spectral clustering. We show that the constrained spectral clustering (CSC) still can be solved by generalized eigen-decomposition. Experimental results confirm the effectiveness of the proposed algorithm.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
68U10 Computing methodologies for image processing
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Andrew, Y.; Michael, I.; Yair, W.: On spectral clustering: analysis and an algorithm, , 849-856 (2001)
[2] Antonakaki, P.; Kosmopoulos, D.; Perantonis, S. J.: Detecting abnormal human behaviour using multiple cameras, Signal processing 89, No. September, 1723-1738 (2009) · Zbl 1178.94134 · doi:10.1016/j.sigpro.2009.03.016
[3] J. Anupama, Segmentation and recognition of 3D point clouds within graph-theoretic and thermodynamic frameworks, Ph.D. Thesis, Northeastern University, 2005.
[4] Bertsekas, D. P.: Nonlinear programming, (1999) · Zbl 1015.90077
[5] Charlie, C. L. W.; Terry, K. K. C.; Matthew, M. F. Y.: From laser-scanned data to feature human model: a system based on fuzzy logic concept, Computer-aided design 35, No. 3, 241-253 (2003)
[6] Chen, C. -C.; Hsieh, J. -W.; Hsu, Y. -T.; Huang, C. -Y.: Segmentation of human body parts using deformable triangulation, 18th international conference on pattern recognition, 2006 1, 355-358 (2006)
[7] Coleman, T.; Saunderson, J.; Wirth, A.: Spectral clustering with inconsistent advice, , 152-159 (2008)
[8] Dekker, L.; Douros, I.; Buston, B.; Treleaven, P.: Building symbolic information for 3d human body modeling from range data, , 388-397 (1999)
[9] García, J. A.; Fdez-Valdivia, J.; Cortijo, F. J.; Molina, R.: A dynamic approach for clustering data, Signal processing 44, No. June, 181-196 (1995)
[10] Grone, R.; Merris, R.; Sunder, V. S.: The Laplacian spectrum of a graph, SIAM journal on matrix analysis and applications 11, No. March, 218-238 (1990) · Zbl 0733.05060 · doi:10.1137/0611016
[11] Ju, X.; Naoufel, W.; Paul, S. J.: Automatic segmentation of 3d human body scans, , 239-244 (2000)
[12] Kannan, R.; Vempala, S.; Vetta, A.: On clusterings: good, bad and spectral, Journal of the ACM 51, No. May, 497-515 (2004) · Zbl 1192.05160 · doi:10.1145/990308.990313
[13] Kanungo, T.; Mount, D. M.; Netanyahu, N. S.; Piatko, C. D.; Silverman, R.; Wu, A. Y.: An efficient k-means clustering algorithm: analysis and implementation, IEEE transactions on pattern analysis and machine intelligence 24, No. 7, 881-892 (2002) · Zbl 1373.68466
[14] Li, X.; Tian, Z.: Optimum cut-based clustering, Signal processing 87, No. November, 2491-2502 (2007) · Zbl 1186.94205 · doi:10.1016/j.sigpro.2007.03.017
[15] Lihi, Z. -M.; Pietro, P.: Self-tuning spectral clustering, Advances in neural information processing systems 17, 1601-1608 (2004)
[16] Luxburg, U.: A tutorial on spectral clustering, Statistics and computing 17, No. December, 395-416 (2007)
[17] Luxburg, U.; Olivier, B.; Mikhail, B.: Limits of spectral clustering, (2004) · Zbl 1078.68134
[18] M. Meila, J. Shi, A random walks view of spectral segmentation, 2001.
[19] Mori, G.; Ren, X.; Efros, A.; Malik, J.: Recovering human body configurations: combining segmentation and recognition, Proceedings of the 2004 IEEE computer society conference on computer vision and pattern recognition, June 2004 2, 326-333 (2004)
[20] Nurre, J. H.: Locating landmarks on human body scan data, , 289-295 (1997)
[21] Shi, J.; Malik, J.: Normalized cuts and image segmentation, IEEE transactions on pattern analysis and machine intelligence 22, No. August, 888-905 (2000)
[22] Song, Y.; Goncalves, L.; Perona, P.: Unsupervised learning of human motion, IEEE transactions on pattern analysis and machine intelligence 25, No. 7, 814-827 (2003)
[23] Wang, X.; Davidson, I.: Flexible constrained spectral clustering, , 563-572 (2010)
[24] Weik, S.; Liedtke, C. -E.: Hierarchical 3d pose estimation for articulated human body models from a sequence of volume data, , 27-34 (2001)
[25] Werghi, N.; Xiao, Y.: Recognition of human body posture from a cloud of 3d data points using wavelet transform coefficients, (2002)
[26] Woo, H.; Kang, E.; Wang, S.; Lee, K. H.: A new segmentation method for point cloud data, International journal of machine tools and manufacture 42, No. 2, 167-178 (2002)
[27] Xiao, Y.; Paul, S.; Naoufel, W.: A discrete reeb graph approach for the segmentation of human body scans, , 378-385 (2003)
[28] Yang, M. -H.; Narendra, A.: Gaussian mixture model for human skin color and its applications in image and video databases, , 458-466 (1999)
[29] Yilmaz, A.; Javed, O.; Shah, M.: Object tracking: a survey, ACM computing survey 38, No. 4, 13 (2006)
[30] Yu, S. X.; Shi, J.: Segmentation given partial grouping constraints, IEEE transactions on pattern analysis and machine intelligence 26, No. 2, 173-183 (2004)
[31] Zhou, T.; Tao, D.: Fast gradient clustering, , 1-6 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.