×

Quantum gauge symmetries in noncommutative geometry. (English) Zbl 1300.81057

The authors continue the study initiated in [the first author et al., Comm. Math. Phys. 307, 101–131 (2011; Zbl 1236.81191)] by investigating the notion of quantum gauge symmetries with the aim to better understand the Standard Model of particle physics. To do so, they use quantum groups and spectral triples; the model examples include finite-dimensional (real and complex) \(C^*\)-algebras.

MSC:

81T13 Yang-Mills and other gauge theories in quantum field theory
46L85 Noncommutative topology
81R60 Noncommutative geometry in quantum theory
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
17B37 Quantum groups (quantized enveloping algebras) and related deformations
46L60 Applications of selfadjoint operator algebras to physics

Citations:

Zbl 1236.81191
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] T. Banica, Théorie des représentations du groupe quantique compact libre O.n/. C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), 241-244. · Zbl 0862.17010
[2] T. Banica, Le groupe quantique compact libre U.n/. Comm. Math. Phys. 190 (1997), 143-172. · Zbl 0906.17009 · doi:10.1007/s002200050237
[3] T. Banica, Quantum automorphism groups of small metric spaces. Pacific J. Math. 219 (2005), 27-51. · Zbl 1104.46039 · doi:10.2140/pjm.2005.219.27
[4] T. Banica, Quantum automorphism groups of homogeneous graphs. J. Funct. Anal. 224 (2005), 243-280. · Zbl 1088.46040 · doi:10.1016/j.jfa.2004.11.002
[5] T. Banica, S. Curran, and R. Speicher, Stochastic aspects of easy quantum groups. Probab. Theory Related Fields 149 (2011), 435-462. · Zbl 1236.60008 · doi:10.1007/s00440-010-0260-4
[6] T. Banica and J.-M. Schlenker, Combinatorial aspects of orthogonal group integrals. Internat. J. Math. 22 (2011), 1611-1646. · Zbl 1232.33024 · doi:10.1142/S0129167X11007343
[7] T. Banica and R. Vergnioux, Invariants of the half-liberated orthogonal group. Ann. Inst. Fourier ( Grenoble) 60 (2010), 2137-2164. · Zbl 1277.46040 · doi:10.5802/aif.2579
[8] J. Bhowmick, F. D’Andrea, and L. Da\?browski, Quantum isometries of the finite non- commutative geometry of the standard model. Comm. Math. Phys. 307 (2011), 101-131. · Zbl 1236.81191 · doi:10.1007/s00220-011-1301-2
[9] J. Bhowmick and D. Goswami, Quantum group of orientation-preserving Riemannian isometries. J. Funct. Anal. 257 (2009), 2530-2572. · Zbl 1180.58005 · doi:10.1016/j.jfa.2009.07.006
[10] J. Bichon, Quantum automorphism groups of finite graphs. Proc. Amer. Math. Soc. 131 (2003), 665-673. · Zbl 1013.16032 · doi:10.1090/S0002-9939-02-06798-9
[11] J. Bichon, The representation category of the quantum group of a non-degenerate bilinear form. Comm. Algebra 31 (2003), 4831-4851. · Zbl 1034.16042 · doi:10.1081/AGB-120023135
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.