×

Noncommutative Painlevé equations and systems of Calogero type. (English) Zbl 1402.34092

Summary: All Painlevé equations can be written as a time-dependent Hamiltonian system, and as such they admit a natural generalization to the case of several particles with an interaction of Calogero type (rational, trigonometric or elliptic). Recently, these systems of interacting particles have been proved to be relevant in the study of \(\beta\)-models. An almost two-decade-old open question by Takasaki asks whether these multi-particle systems can be understood as isomonodromic equations, thus extending the Painlevé correspondence. In this paper we answer in the affirmative by displaying explicitly suitable isomonodromic Lax pair formulations. As an application of the isomonodromic representation, we provide a construction based on discrete Schlesinger transforms, to produce solutions for these systems for special values of the coupling constants, starting from uncoupled ones; the method is illustrated for the case of the second Painlevé equation.

MSC:

34M55 Painlevé and other special ordinary differential equations in the complex domain; classification, hierarchies
34M56 Isomonodromic deformations for ordinary differential equations in the complex domain
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bertola, M., The dependence on the monodromy data of the isomonodromic tau function, Commun. Math. Phys., 294, 539-579, (2010) · Zbl 1218.37099 · doi:10.1007/s00220-009-0961-7
[2] Bertola, M.; Cafasso, M., Fredholm determinants and pole-free solutions to the noncommutative painleve’ II equation, Commun. Math. Phys., 309, 793-833, (2012) · Zbl 1234.35171 · doi:10.1007/s00220-011-1383-x
[3] Bertola, M.; Cafasso, M., Darboux transformations and random point processes, Int. Math. Res. Notices, 15, 6211-6266, (2015) · Zbl 1333.60097 · doi:10.1093/imrn/rnu122
[4] Bloemendal, A., Virág, B.: Limits of spiked random matrices I. Probability Theory and Related Fields, 156 (2013)
[5] Boalch, P., Simply-laced isomonodromy systems, Publications mathmatiques de l’IHS, 116, 1-68, (2012) · Zbl 1270.34204 · doi:10.1007/s10240-012-0044-8
[6] Borot, G., Eynard, B., Majumdar, S.N., Nadal, C.: Large deviations of the maximal eigenvalue of random matrices. J. Stat. Mech. Theory Exp., P11024 (2011)
[7] Flaschka, H.; Newell, A. C., Monodromy- and spectrum-preserving deformations. I, Commun. Math. Phys., 76, 65-116, (1980) · Zbl 0439.34005 · doi:10.1007/BF01197110
[8] Fokas, A.S., Its, A.R., Kapaev, A.A., Novokshenov, V.Y.: Painlevé Transcendents, Volume 128 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, The Riemann-Hilbert approach (2006)
[9] Inozemtsev, V. I., Lax representation with spectral parameter on a torus for integrable particle systems, Lett. Math. Phys., 17, 11-17, (1989) · Zbl 0679.70005 · doi:10.1007/BF00420008
[10] Ito, T., Terwilliger, P.: Double affine Hecke algebras of rank 1 and the \({\mathbb{Z}_3}\)-symmetric Askey-Wilson relations. SIGMA Symmetry Integrability Geom. Methods Appl., 6:Paper 065, 9 (2010) · Zbl 1220.33018
[11] Jimbo, M.; Miwa, T., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II, Physica D, 2, 407-448, (1981) · Zbl 1194.34166 · doi:10.1016/0167-2789(81)90021-X
[12] Jimbo, M.; Miwa, T.; Ueno, K., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. general theory and \({τ}\)-function, Physica D, 2, 306-352, (1981) · Zbl 1194.34167 · doi:10.1016/0167-2789(81)90013-0
[13] Kajiwara, K.; Masuda, T.; Noumi, M.; Ohta, Y.; Yamada, Y., Cubic pencils and Painlevé Hamiltonians, Funkc. Ekvac., 48, 147-160, (2005) · Zbl 1161.34064 · doi:10.1619/fesi.48.147
[14] Kawakami, H., Matrix Painlevé systems, J. Math. Phys., 56, 033503, (2015) · Zbl 1322.34099 · doi:10.1063/1.4914369
[15] Kawakami, H.: Four-dimensional Painlevé-type equations associated with ramified linear equations I: Matrix Painlevé systems. arXiv:1608.03927 (2016)
[16] Kazhdan, D.; Kostant, B.; Sternberg, S., Hamiltonian group actions and dynamical systems of Calogero type, Commun. Pure Appl. Math. , 31, 481-507, (1978) · Zbl 0368.58008 · doi:10.1002/cpa.3160310405
[17] Krichever, I., On rational solutions of the Kadomtsev-Petviashvili equation and integrable systems of \(N\) particles on the line, Funct. Anal. Appl., 12, 1, (1978) · Zbl 0408.70010 · doi:10.1007/BF01077558
[18] Levin, A.M. Olshanetsky, M.A.: Painlevé-Calogero Correspondence. In Calogero-Moser-Sutherland Models, CRM Series in Mathematical Physics. CRM (2000)
[19] Manin, Y.I.: Rational curves, elliptic curves, and the Painlevé equation. In: Surveys in Modern Mathematics, vol. 321 of London Mathematical Society Lecture Note Series, pp. 24-33. Cambridge University Press, Cambridge (2005) · Zbl 1080.14062
[20] Mazzocco, M., Rubtsov, V.: Confluence on the Painlevé Monodromy Manifolds, their Poisson Structure and Quantisation. (2012). arXiv:1212.6723
[21] Mazzocco, M., Confluences of the Painlevé equations, Cherednik algebras and \(q\)-Askey scheme, Nonlinearity, 29, 2565-2608, (2016) · Zbl 1347.33039 · doi:10.1088/0951-7715/29/9/2565
[22] Okamoto, K., Polynomial Hamiltonians associated with Painlevé equations, I. Proc. Jpn. Acad. Ser. A Math. Sci., 56, 264-268, (1980) · Zbl 0476.34010 · doi:10.3792/pjaa.56.264
[23] Okamoto, K., Sur LES feuilletages associés aux équations du second ordre à à points critiques fixes de P. Painlevé, Jpn. J. Math. (N.S.), 5, 1-79, (1979) · Zbl 0426.58017 · doi:10.4099/math1924.5.1
[24] Painlevé, P., Sur LES équations différentielles du second ordre à à points critiques fixés, C.R. Acad. Sci (Paris), 143, 1111-1117, (1906) · JFM 37.0341.04
[25] Rembado, G.: Simply-laced quantum connections generalising KZ. (2017). arXiv:1704.08616
[26] Reshetikhin, N., The Knizhnik-Zamolodchikov system as a deformation of the isomonodromy problem, Lett. Math. Phys., 26, 167-177, (1992) · Zbl 0776.17016 · doi:10.1007/BF00420750
[27] Retakh, V.; Rubtsov, V., Noncommutative Toda chains, Hankel quasideterminants and Painlevé II equation, J. Phys. A Math. Theor., 43, 505204, (2010) · Zbl 1211.37079 · doi:10.1088/1751-8113/43/50/505204
[28] Rumanov, I., Classical integrability for beta-ensembles and general Fokker-Planck equations, J. Math. Phys., 56, 013508, (2015) · Zbl 1309.82026 · doi:10.1063/1.4906067
[29] Shioda, T.; Takano, K., On some Hamiltonian structures of Painlevé systems. I, Funkc. Ekvac., 40, 271-291, (1997) · Zbl 0891.34003
[30] Takasaki, K., Painlevé-Calogero correspondence revisited, J. Math. Phys., 42, 1443-1473, (2001) · Zbl 1016.34089 · doi:10.1063/1.1348025
[31] Tracy, C. A.; Widom, H., Level-spacing distributions and the Airy kernel, Commun. Math. Phys., 159, 151-174, (1994) · Zbl 0789.35152 · doi:10.1007/BF02100489
[32] van der Put, M.; Saito, M.-H., Moduli spaces for linear differential equations and the Painlevé equations, Ann. Inst. Fourier (Grenoble), 59, 2611-2667, (2009) · Zbl 1189.14021 · doi:10.5802/aif.2502
[33] Wasow, W.: Asymptotic expansions for ordinary differential equations. Dover Publications Inc., New York, Reprint of the 1976 edition (1987) · Zbl 0644.34003
[34] Wilson, G., Collisions of Calogero-Moser particles and an adelic Grassmannian, Invent. Math., 133, 1-41, (1998) · Zbl 0906.35089 · doi:10.1007/s002220050237
[35] Zabrodin, A.; Zotov, A., Quantum Painlevé-Calogero correspondence, J. Math. Phys., 53, 073507, (2012) · Zbl 1276.81083 · doi:10.1063/1.4732532
[36] Zabrodin, A.; Zotov, A., Quantum Painlevé-Calogero correspondence for Painlevé VI, J. Math. Phys., 53, 073508, (2012) · Zbl 1276.81082 · doi:10.1063/1.4732534
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.