zbMATH — the first resource for mathematics

Traffic assignment: methods and simulations for an alternative formulation of the fixed demand problem. (English) Zbl 07316564
Summary: Motorists often face the dilemma of choosing the route enabling them to realise the fastest (i.e., shortest) journey time. In this paper we examine discrete and continuous optimisation and equilibrium-type problems for a simplified parallel link traffic model using a variance based approach. Various methodologies used for solving these problems (brute force, dynamic programming, tabu search, steepest descent) are explored and comparison is made with the Beckmann cost function employed in transport modelling.
90Cxx Mathematical programming
49Jxx Existence theories in calculus of variations and optimal control
Full Text: DOI
[1] Bagdasar, O.; Popovici, N., Local maximizers of generalized convex vector-valued functions, J. Nonlinear Convex Anal., 18, 12, 2229-2250 (2017) · Zbl 1387.90233
[2] Bar-Gera, H.; Hellman, F.; Patriksson, M., Computational precision of traffic equilibria sensitivities in automatic network design and road pricing, Transportation Research Part B: Methodological, 57, 485-500 (2013)
[3] Bazaraa, M. S.; Sherali, H. D.; Shetty, C. M., Nonlinear Programming: Theory and Algorithms, 639 (2006), Wiley-Interscience · Zbl 1140.90040
[4] Bellman, R., Dynamic Programming, 340 (2003), Dover Publications · Zbl 1029.90076
[5] Berry, S.; Lowndes, V.; Trovati, M., Guide to Computational Modelling for Decision Processes: Theory, Algorithms, Techniques and Applications, 390 (2017)
[6] Cao, J.; Li, R.; Huang, W.; Guo, J.; Wei, Y., Traffic network equilibrium problems with demands uncertainty and capacity constraints of arcs by scalarization approaches, Sci. China Technol. Sci. (2017)
[7] Dafermos, S. C.; Sparrow, F. T., The traffic assignment problem for a general network, J. Res. Natl. Bur. Stand. Ser. B, 73, 2, 91-118 (1969) · Zbl 0197.46003
[8] Huang, W.; Jia, W.; Guo, J.; Williams, B. M.; Shi, G.; Wei, Y.; Cao, J., Real-time prediction of seasonal heteroscedasticity in vehicular traffic flow series, IEEE Trans. Intell. Transport. Syst., 99, 1-11 (2017)
[9] Jahn, J., Mathematical Vector Optimization in Partially Ordered Linear Spaces, 310 (1986), Lang
[10] Koutsoupias, E.; Papadimitriou, C., Worst-case equilibria, Comput. Sci. Rev., 3, 2, 65-69 (2009) · Zbl 1303.91012
[11] Krylatov, A. Y., Network flow assignment as a fixed point problem, J. Appl. Ind. Math., 10, 2, 243-256 (2016)
[12] Lowndes, V.; Berry, S.; Parkes, C.; Bagdasar, O.; Popovici, N., Further use of heuristic methods, (Guide to Computational Modelling for Decision Processes (2017), Springer), 199-235
[13] Minderhoud, M.; Botma, H.; Bovy, P., Assessment of roadway capacity estimation methods, Transp. Res. Rec.: J. Transp. Res. Board, 1572, 59-67 (1997)
[14] Patriksson, M., A survey on the continuous nonlinear resource allocation problem, European J. Oper. Res., 185, 1, 1-46 (2008) · Zbl 1146.90493
[15] Patriksson, M., The Traffic Assignment Problem: Models and Methods (1994) · Zbl 0828.90127
[16] Popovici, N., Pareto reducible multicriteria optimization problems, Optimization, 54, 3, 253-263 (2005) · Zbl 1087.90070
[18] Roughgarden, T., Selfish Routing and the Price of Anarchy, vol. 174 (2005), MIT press Cambridge
[19] Wardrop, J. G., Road Paper. Some theoretical aspects of road traffic research, Proc. Inst. Civ. Eng., 1, 3, 325-362 (1952)
[20] Youn, H.; Gastner, M. T.; Jeong, H., Price of anarchy in transportation networks: Efficiency and optimality control, Phys. Rev. Lett., 101, 12, 128701 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.