Minimum death rates and maximum life expectancy: the role of concordant ages. (English) Zbl 1426.91207

Summary: Only five populations have achieved maximum life expectancy (or best practice population) more than occasionally since 1900. The aim of this article is to understand how maximum life expectancy is achieved in the context of mortality transition. We explore this aim using the concepts of potential life expectancy, based on minimum rates at each age among all high longevity populations, and concordant ages. Concordant ages are defined as ages at which the minimum death rate occurs in the population with the maximum life expectancy. The results show the extent to which maximum life expectancy could increase through the realization of demonstrably achievable minimum rates. Concordant ages are concentrated at increasingly older ages over time, but they have produced more than half of the change in maximum life expectancy in almost all periods since 1900. This finding is attributed to their quantity and position whereby concordant ages are concentrated at the ages that have the greatest impact on mortality decline in a particular period. Based on mortality forecasts, we expect that concordant ages will continue to lead increases in female maximum life expectancy, but that they will play a weaker role in male maximum life expectancy.


91G05 Actuarial mathematics
91D20 Mathematical geography and demography
Full Text: DOI


[1] Aitchison, J., The statistical analysis of compositional data (1986), London: Chapman & Hall, London · Zbl 0688.62004
[2] Bengtsson, T.; Ohlsson., R.; Bengtsson, T., Population, economy and welfare in Sweden, The demographic transition revisited (1994), Berlin: Springer, Berlin
[3] Bergeron-Boucher, M.-P.; Canudas-Romo, V.; Oeppen, J.; Vaupel., J. W., Coherent forecasts of mortality with compositional data analysis, Demographic Research, 7, 17, 527-66 (2017)
[4] Bergeron-Boucher, M.-P.; Ebeling, M.; Canudas-Romo., V., Decomposing changes in life expectancy: Compression versus shifting mortality, Demographic Research, 33, 14, 391-424 (2015)
[5] Bergeron-Boucher, M.-P.; Simonacci, V.; Oeppen, J.; Gallo, M., Coherent modeling and forecasting of mortality patterns for subpopulations using multiway analysis of compositions: An application to Canadian provinces and territories, North American Actuarial Journal, 22, 1-27 (2018) · Zbl 1393.62043
[6] Bongaarts, J., Long-range trends in adult mortality: Models and projection methods, Demography, 42, 1, 23-49 (2005)
[7] Booth, H.; Tickle., L., Mortality modelling and forecasting: A review of methods, Annals of Actuarial Science, 3, 1-2, 3-43 (2008)
[8] Bourgeois-Pichat, J., Essai sur la mortalité biologique de l’homme [Essay on the mortality biology of humans], Population, 7, 3, 381-94 (1952)
[9] Bourgeois-Pichat, J., Future outlook for mortality decline in the world, Population Bulletin UN, 11, 12-41 (1978)
[10] Canudas-Romo, V., The modal age at death and the shifting mortality hypothesis, Demographic Research, 19, 30, 1179-204 (2008)
[11] Canudas-Romo, V., Three measures of longevity: Time trends and record values, Demography, 47, 2, 299-312 (2010)
[12] Canudas-Romo, V.; Dugoff, E. H.; Ahmed, S.; Wu, A.; Anderson., G. F., Life expectancy in 2040: What do clinical experts expect?, North American Actuarial Journal, 20, 3, 276-85 (2016) · Zbl 1414.91171
[13] Dong, X.; Milholland, B.; Vijg., J., Evidence for a limit to human lifespan, Nature, 538, 257-9 (2016)
[14] Dublin, L. I.; Lotka, A. J.; Spiegelman, M., Length of life: A study of the life table (1949), New York: Ronald Press, New York
[15] Engelman, M.; Canudas-Romo, V.; Agree., E. M., The implications of increased survivorship for mortality variation in aging populations, Population and Development Review, 36, 3, 511-39 (2010)
[16] Fries, J. F., Aging, natural death and the compression of morbidity, New England Journal of Medicine, 303, 3, 130-5 (1980)
[17] Goldman, N.; Lord., G., A new look at entropy and the lifetable, Demography, 23, 2, 275-82 (1986)
[18] Goldstein, J. R.; Wachter., K. W., Relationships between period and cohort life expectancy: Gaps and lags, Population Studies, 60, 3, 257-69 (2006)
[19] Guillot, M.; Canudas-Romo., V.; Schoen, R., Dynamic demographic analysis, Revisiting life expectancy rankings in countries that have experienced fast mortality decline (2016), New York: Springer, New York
[20] Human Mortality Database
[21] Hyndman, R. J.; Booth, H.; Yasmeen., F., Coherent mortality forecasting: The product-ratio method with functional time series models, Demography, 50, 1, 261-83 (2013)
[22] Johnson, N. P. A. S.; Mueller., J., Updating the accounts: Global mortality of the 1918-1920 “Spanish” influenza pandemic, Bulletin of the History of Medicine, 76, 1, 105-15 (2002)
[23] Keyfitz, N., Applied mathematical demography (1977), New York: Wiley, New York · Zbl 1060.91519
[24] Kirkwood, B. R.; Sterne, J. A. C., Medical statistics (2003), Malden, MA: Blackwell Science, Malden, MA
[25] Kontis, V.; Bennett, J. E.; Mathers, C. D.; Li, G.; Foreman, K.; Ezzati., M., Future life expectancy in 35 industrialised countries: Projections with a Bayesian model ensemble, The Lancet, 389, 10076, 1323-35 (2017)
[26] Lee, R. D.; Carter., L. R., Modeling and forecasting US mortality, Journal of the American Statistical Association, 87, 419, 659-71 (1992) · Zbl 1351.62186
[27] Li, N.; Lee., R., Coherent mortality forecasts for a group of populations: An extension of the Lee-Carter method, Demography, 42, 3, 575-94 (2005)
[28] Meslé, F.; Vallin., J.; Rogers, R. G.; Crimmins, E. M., International handbook of adult mortality, Historical trends in mortality (2011), New York: Springer, New York
[29] Nizard, A.; Vallin., J., Les plus faibles mortalités [Minimum mortality], Population, 25, 4, 847-74 (1970)
[30] Oeppen, J.; Vaupel., J. W., Broken limits to life expectancy, Science, 296, 10, 1029-31 (2002)
[31] Olshansky, S. J., Ageing: Measuring our narrow strip of life, Nature, 538, 175-6 (2016)
[32] Olshansky, S. J.; Carnes, B. A.; Désesquelles., A., Prospects for human longevity, Science, 291, 23, 1491-2 (2001)
[33] Olshansky, S. J.; Passaro, D. J.; Hershow, R. C.; Layden, J.; Carnes, B. A.; Brody, J.; Hayflick, L.; Butler, R. N.; Allison, D. B.; Ludwig., D. S., A potential decline in life expectancy in the United States in the 21st century, New England Journal of Medicine, 352, 11, 1138-45 (2005)
[34] Preston, S. H.; Heuveline, P.; Guillot, M., Demography: Measuring and modeling population processes (2001), Malden, MA: Blackwell, Malden, MA
[35] Shkolnikov, V. M.; Jdanov, D. A.; Andreev, E. M.; Vaupel., J. W., Steep increase in best-practice cohort life expectancy, Population and Development Review, 37, 3, 419-34 (2011)
[36] Thatcher, A. R.; Kannisto, V.; Vaupel, J. W., The force of mortality at ages 80 to 120. (1998), Odense University Press
[37] Uemura, K., Excess mortality ratio with reference to the lowest age-sex-specific death rates among countries, World Health Statistics Quarterly, 42, 1, 26-41 (1989)
[38] Vallin, J.; Meslé., F., Minimum mortality: A predictor of future progress?, Population (English Edition), 63, 4, 557-90 (2008)
[39] Vallin, J.; Meslé., F., The segmented trend line of highest life expectancies, Population and Development Review, 35, 1, 159-87 (2009)
[40] Vallin, J., and Meslé, F.. 2016. Highest life expectancies: Which leader after Japan? Paper presented at the Population Association of America 2016 Annual Meeting, March 31 to April 2, Washington, DC.
[41] Vaupel, J. W., How change in age-specific mortality affects life expectancy, Population Studies, 40, 1, 147-57 (1986)
[42] Vaupel, J. W.; Canudas-Romo., V., Decomposing change in life expectancy: A bouquet of formulas in honor of Nathan Keyfitz’s 90th birthday, Demography, 40, 2, 201-16 (2003)
[43] Vaupel, J. W.; Carey, J. R.; Christensen, K.; Johnson, T. E.; Yashin, A. I.; Holm, N. V.; Iachine, I. A.; Kannisto, V.; Khazaeli, A. A.; Liedo, P.; Longo, V. D.; Zeng, Y.; Manton, K. G.; Curtsinger., J. W., Biodemographic trajectories of longevity, Science, 280, 5365, 855-60 (1998)
[44] Vaupel, J. W.; Zhang, Z.; Van Raalte., A. A., Life expectancy and disparity: An international comparison of life table data, BMJ Open, 1, 1, e000128 (2011)
[45] Whelpton, P. K., Forecasts of the population of the United States, 1945-1975 (1947), Washington, DC: Government Printing Office, Washington, DC
[46] Wilmoth, J.; Zureick, S.; Canudas-Romo, V.; Inoue, M.; Sawyer., C. C., A flexible two- dimensional mortality model for use in indirect estimation, Population Studies, 66, 2, 219-21 (2012)
[47] Wilmoth, J. R., Demography of longevity: Past, present and future trends, Experimental Gerontology, 35, 9, 1111-29 (2000)
[48] Wunsch, G., A minimum life-table for Europe, European Demographic Information Bulletin, 5, 1, 2-10 (1974)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.