×

Bayesian nonparametric shrinkage applied to Cepheid star oscillations. (English) Zbl 1330.62186

Summary: Bayesian nonparametric regression with dependent wavelets has dual shrinkage properties: there is shrinkage through a dependent prior put on functional differences, and shrinkage through the setting of most of the wavelet coefficients to zero through Bayesian variable selection methods. The methodology can deal with unequally spaced data and is efficient because of the existence of fast moves in model space for the MCMC computation. { } The methodology is illustrated on the problem of modeling the oscillations of Cepheid variable stars; these are a class of pulsating variable stars with the useful property that their periods of variability are strongly correlated with their absolute luminosity. Once this relationship has been calibrated, knowledge of the period gives knowledge of the luminosity. This makes these stars useful as “standard candles” for estimating distances in the universe.

MSC:

62G08 Nonparametric regression and quantile regression
62J07 Ridge regression; shrinkage estimators (Lasso)
62F15 Bayesian inference
85A35 Statistical astronomy
62P35 Applications of statistics to physics

Software:

LINPACK
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] Abramovich, F., Angelini, C. and De Canditiis, D. (2007). Pointwise optimality of Bayesian wavelet estimators. Ann. Inst. Statist. Math. 59 425-434. · Zbl 1122.62020 · doi:10.1007/s10463-006-0071-7
[2] Abramovich, F., Sapatinas, T. and Silverman, B. W. (1998). Wavelet thresholding via a Bayesian approach. J. R. Stat. Soc. Ser. B Stat. Methodol. 60 725-749. · Zbl 0910.62031 · doi:10.1111/1467-9868.00151
[3] Antoniadis, A., Grégoire, G. and McKeague, I. W. (1994). Wavelet methods for curve estimation. J. Amer. Statist. Assoc. 89 1340-1353. · Zbl 0815.62018 · doi:10.2307/2290996
[4] Barnes, T. G., Jefferys, W. H., Berger, J., Mueller, P., Orr, K. and Rodriguez, R. (2003). Bayesian analysis of the cepheid distance scale. Astrophysical Journal 592 539-554.
[5] Cai, T. T. and Brown, L. D. (1998). Wavelet shrinkage for nonequispaced samples. Ann. Statist. 26 1783-1799. · Zbl 0929.62047 · doi:10.1214/aos/1024691357
[6] Chambers, J. (1971). Regression updating. J. Amer. Statist. Assoc. 66 744-748.
[7] Chipman, H., Kolaczyk, E. and McCulloch, R. (1997). Adaptive Bayesian wavelet shrinkage. J. Amer. Statist. Assoc. 92 440. · Zbl 0913.62027 · doi:10.2307/2965411
[8] Clyde, M. A. (1999). Bayesian model averaging and model search strategies. In Bayesian Statistics 6 (J. M. Bernardo, J. O. Berger, A. P. David and A. F. M. Smith, eds.) 157-185. Oxford Univ. Press, New York. · Zbl 0973.62022
[9] Clyde, M. A., DeSimone, H. and Parmigiani, G. (1996). Prediction via orthogonalized model mixing. J. Amer. Statist. Assoc. 91 1197-1208. · Zbl 0880.62026 · doi:10.2307/2291738
[10] Clyde, M. and George, E. I. (2004). Model uncertainty. Statist. Sci. 19 81-94. · Zbl 1062.62044 · doi:10.1214/088342304000000035
[11] Clyde, M., Parmigiani, G. and Vidakovic, B. (1998). Multiple shrinkage and subset selection in wavelets. Biometrika 85 391-401. · Zbl 0938.62021 · doi:10.1093/biomet/85.2.391
[12] Dongarra, J., Moler, C., Bunch, J. and Stewart, G. (1979). Linpack’s Users’ Guide . SIAM, Philadelphia. · Zbl 0476.68025
[13] Donoho, D. L. and Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika 81 425-455. · Zbl 0815.62019 · doi:10.1093/biomet/81.3.425
[14] Ferreira, M. A. R. and Lee, H. K. H. (2007). Multiscale Modeling : A Bayesian Perspective . Springer, New York. · Zbl 1183.62046 · doi:10.1007/978-0-387-70898-0
[15] George, E. and McCulloch, R. (1997). Approaches for Bayesian variable selection. Statist. Sinica 7 339-374. · Zbl 0884.62031
[16] Hoeting, J. A., Madigan, D., Raftery, A. E. and Volinsky, C. T. (1999). Bayesian model averaging: A tutorial. Statist. Sci. 14 382-401. · Zbl 1059.62525 · doi:10.1214/ss/1009212519
[17] James, W. and Stein, C. (1961). Estimation with quadratic loss. In Proc. 4 th Berkeley Sympos. Math. Statist. and Prob. , Vol. I 361-379. Univ. California Press, Berkeley, CA. · Zbl 1281.62026
[18] Madigan, D. and Raftery, A. (1994). Model selection and accounting for model uncertainty in graphical models using occam’s window. J. Amer. Statist. Assoc. 89 1535-1546. · Zbl 0814.62030 · doi:10.2307/2291017
[19] Raftery, A. E., Madigan, D. and Hoeting, J. A. (1997). Bayesian model averaging for linear regression models. J. Amer. Statist. Assoc. 92 179-191. · Zbl 0888.62026 · doi:10.2307/2291462
[20] Semadeni, C., Davison, A. C. and Hinkley, D. V. (2004). Posterior probability intervals in Bayesian wavelet estimation. Biometrika 91 497-505. · Zbl 1125.62318 · doi:10.1093/biomet/91.2.497
[21] Smith, M. and Kohn, R. (1996). Nonparametric regression using Bayesian variable selection. J. Econometrics 75 317-344. · Zbl 0864.62025 · doi:10.1016/0304-4076(95)01763-1
[22] Stein, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability , 1954 - 1955, Vol. I 197-206. Univ. California Press, Berkeley. · Zbl 0073.35602
[23] Tadesse, M. G., Ibrahim, J. G., Vannucci, M. and Gentleman, R. (2005). Wavelet thresholding with Bayesian false discovery rate control. Biometrics 61 25-35. · Zbl 1077.62018 · doi:10.1111/j.0006-341X.2005.031102.x
[24] ter Braak, C. J. F. (2006). Bayesian sigmoid shrinkage with improper variance priors and an application to wavelet denoising. Comput. Statist. Data Anal. 51 1232-1242. · Zbl 1157.62357 · doi:10.1016/j.csda.2006.06.011
[25] Vannucci, M. and Corradi, F. (1999). Covariance structure of wavelet coefficients: Theory and models in a Bayesian perspective. J. R. Stat. Soc. Ser. B Stat. Methodol. 61 971-986. · Zbl 0940.62023 · doi:10.1111/1467-9868.00214
[26] Vidakovic, B. (1998). Nonlinear wavelet shrinkage with Bayes rules and Bayes factors. J. Amer. Statist. Assoc. 93 173-179. · Zbl 0953.62037 · doi:10.2307/2669614
[27] Vidakovic, B. and Müller, P. (1999). An introduction to wavelets. In Bayesian Inference in Wavelet-Based Models. Lecture Notes in Statistics 141 1-18. Springer, New York. · Zbl 0920.00017
[28] Wang, X. and Wood, A. T. A. (2006). Empirical Bayes block shrinkage of wavelet coefficients via the noncentral \chi 2 distribution. Biometrika 93 705-722. · Zbl 1109.62003 · doi:10.1093/biomet/93.3.705
[29] Yau, P. and Kohn, R. (1999). Wavelet nonparametric regression using basis averaging. In Bayesian Inference in Wavelet-Based Models. Lecture Notes in Statistics . 141 95-108. Springer, New York. · Zbl 0936.62050 · doi:10.1007/978-1-4612-0567-8_7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.