×

Linear and bilinear \(T(b)\) theorems à la Stein. (English) Zbl 1343.42009

In this paper, the authors mainly discuss \(T(b)\) theorems à la Stein for linear and bilinear Calderón-Zygmund operators. An infinite differentiable function \(\phi\) is called a normalized bump function of order \(M\in\mathbb N\cup\{0\}\) if \(\phi\) is supported in the unit ball centered at the origin and \(\|\partial^\alpha\phi\|_{L^\infty}\leq 1\) for all multi-indices \(\alpha\) with \(|\alpha|\leq M\). For fixed \(x_0\in\mathbb R^d\) and \(R>0\), denote \(\phi(\frac{x-x_0}{R})\) by \(\phi^{x_0,R}(x)\) for \(x\in\mathbb R^d\). A function \(b\in L^\infty\) is said to be para-accretive if there exists \(c_0>0\) such that, for any cube \(Q\), there exists a cube \(\widetilde{Q}\subset Q\) satisfying \[ \frac 1{|Q|}\left|\int_{\widetilde{Q}} b(x)\,dx\right|\geq c_0. \]
Letting \(b_0\) and \(b_1\) be para-accretive functions and \(T\) a linear singular integral operator of Calderón-Zygmund type associated to \(b_0\) and \(b_1\), the authors prove that \(T\) can be extended to a bounded linear operator on \(L^2\) if and only if there exists \(M\in\mathbb N\cup\{0\}\) such that, for any normalized bump function \(\phi\) of order \(M\), \(x_0\in\mathbb R^d\) and \(R>0\), \(\| T(b_1\phi^{x_0,R})\|_{L^2}\) and \(\| T^*(b_0\phi^{x_0,R})\|_{L^2}\) can both be controlled by \(R^{\frac d2}\).
Similarly, letting \(b_0\), \(b_1\) and \(b_2\) be para-accretive functions and \(T\) a bilinear singular integral operator of Calderón-Zygmund type associated to \(b_0\), \(b_1\) and \(b_2\), the authors also prove that \(T\) can be extended to a bounded bilinear operator from \(L^p\times L^q\) into \(L^r\) for all \(p,\,q<\infty\) satisfying \(\frac 1p+\frac 1q=\frac 1r\) if and only if there exists \(M\in\mathbb N\cup\{0\}\) such that, for any normalized bump function \(\phi\) of order \(M\), \(x_0,\,x_1,\,x_2\in\mathbb R^d\) and \(R>0\), \(\| T(b_1\phi^{x_1,R},b_2\phi^{x_2,R})\|_{L^2}\), \(\| T^{*1}(b_0\phi^{x_0,R},b_2\phi^{x_2,R})\|_{L^2}\) and \(\| T^{*2}(b_1\phi^{x_1,R},b_0\phi^{x_0,R})\|_{L^2}\) can all be controlled by \(R^{\frac d2}\).

MSC:

42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
47B38 Linear operators on function spaces (general)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] B{\'e}nyi, {\'A}rp{\'a}d; Oh, Tadahiro, Smoothing of commutators for a H\"ormander class of bilinear pseudodifferential operators, J. Fourier Anal. Appl., 20, 2, 282-300 (2014) · Zbl 1327.35471 · doi:10.1007/s00041-013-9312-3
[2] Christ, Michael, Lectures on singular integral operators, CBMS Regional Conference Series in Mathematics 77, x+132 pp. (1990), Published for the Conference Board of the Mathematical Sciences, Washington, DC, by the American Mathematical Society, Providence, RI · Zbl 0745.42008
[3] Christ, Michael; Journ{\'e}, Jean-Lin, Polynomial growth estimates for multilinear singular integral operators, Acta Math., 159, 1-2, 51-80 (1987) · Zbl 0645.42017 · doi:10.1007/BF02392554
[4] David, Guy; Journ{\'e}, Jean-Lin, A boundedness criterion for generalized Calder\'on-Zygmund operators, Ann. of Math. (2), 120, 2, 371-397 (1984) · Zbl 0567.47025 · doi:10.2307/2006946
[5] David, G.; Journ{\'e}, J.-L.; Semmes, S., Op\'erateurs de Calder\'on-Zygmund, fonctions para-accr\'etives et interpolation, Rev. Mat. Iberoamericana, 1, 4, 1-56 (1985) · Zbl 0604.42014 · doi:10.4171/RMI/17
[6] Fefferman, C.; Stein, E. M., \(H^p\) spaces of several variables, Acta Math., 129, 3-4, 137-193 (1972) · Zbl 0257.46078
[7] Grafakos, Loukas, Modern Fourier analysis, Graduate Texts in Mathematics 250, xvi+504 pp. (2009), Springer, New York · Zbl 1158.42001 · doi:10.1007/978-0-387-09434-2
[8] Grafakos, Loukas; Torres, Rodolfo H., Multilinear Calder\'on-Zygmund theory, Adv. Math., 165, 1, 124-164 (2002) · Zbl 1032.42020 · doi:10.1006/aima.2001.2028
[9] Grafakos, Loukas; Torres, Rodolfo H., On multilinear singular integrals of Calder\'on-Zygmund type, Publ. Mat.. Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations (El Escorial, 2000), Vol. Extra, 57-91 (2002) · Zbl 1016.42009 · doi:10.5565/PUBLMAT\_Esco02\_04
[10] Han, Yong Sheng, Calder\'on-type reproducing formula and the \(Tb\) theorem, Rev. Mat. Iberoamericana, 10, 1, 51-91 (1994) · Zbl 0797.42009 · doi:10.4171/RMI/145
[11] Hart, Jarod, A new proof of the bilinear \(\rm T(1)\) Theorem, Proc. Amer. Math. Soc., 142, 9, 3169-3181 (2014) · Zbl 1408.42008 · doi:10.1090/S0002-9939-2014-12054-5
[12] Hart, Jarod, A bilinear T(b) theorem for singular integral operators, J. Funct. Anal., 268, 12, 3680-3733 (2015) · Zbl 1317.42014 · doi:10.1016/j.jfa.2015.02.008
[13] McIntosh, Alan; Meyer, Yves, Alg\`“ebres d”op\'erateurs d\'efinis par des int\'egrales singuli\`“eres, C. R. Acad. Sci. Paris S\'”er. I Math., 301, 8, 395-397 (1985) · Zbl 0584.47030
[14] Stein, Elias M., Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, xiv+290 pp. (1970), Princeton University Press, Princeton, N.J. · Zbl 0207.13501
[15] Stein, Elias M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, With the assistance of Timothy S. Murphy. Princeton Mathematical Series 43, xiv+695 pp. (1993), Monographs in Harmonic Analysis, III, Princeton University Press, Princeton, NJ · Zbl 0821.42001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.