Cambon, Claude; Benoit, Jean-Pierre; Shao, Liang; Jacquin, Laurent Stability analysis and large-eddy simulation of rotating turbulence with organized eddies. (English) Zbl 0819.76035 J. Fluid Mech. 278, 175-200 (1994). We examine the applicability of the classic Bradshaw-Richardson criterion to flows more general than a simple combination of rotation and pure shear. Two approaches are used. Firstly, the linearized theory is applied to a class of rotating two-dimensional flows having arbitrary rates of strain and vorticity and streamfunctions that are quadratic. Secondly, we describe a large-eddy simulation of initially quasi-homogeneous three- dimensional turbulence superimposed on a periodic array of two- dimensional Taylor-Green vortices in a rotating frame. Cited in 25 Documents MSC: 76E99 Hydrodynamic stability 76U05 General theory of rotating fluids 76F10 Shear flows and turbulence Keywords:Bradshaw-Richardson criterion; linearized theory; quasi-homogeneous three-dimensional turbulence; periodic array; Taylor-Green vortices PDF BibTeX XML Cite \textit{C. Cambon} et al., J. Fluid Mech. 278, 175--200 (1994; Zbl 0819.76035) Full Text: DOI References: [1] Yanase, Phys. Fluids 5 pp 2725– (1992) · Zbl 0791.76031 · doi:10.1063/1.858736 [2] DOI: 10.1063/1.858651 · Zbl 0813.76034 · doi:10.1063/1.858651 [3] Bradshaw, J. Fluid Mech. 36 pp 177– (1969) [4] Bidokhti, J. Fluid Mech. 241 pp 469– (1992) [5] Bertoglio, AIAA J. 20 pp 1175– (1982) [6] Leuchter, European Turbulence Conference 4 pp 561– (1992) [7] DOI: 10.1103/PhysRevLett.57.2160 · doi:10.1103/PhysRevLett.57.2160 [8] Batchelor, Q. J. Mech. Appl. Maths 7 pp 83– (1954) [9] Lee, J. Fluid Mech. 216 pp 561– (1990) [10] Bartello, J. Fluid Mech. 273 pp 1– (1994) [11] DOI: 10.1063/1.866124 · doi:10.1063/1.866124 [12] DOI: 10.1063/1.864755 · Zbl 0585.76045 · doi:10.1063/1.864755 [13] Kristoffersen, J. Fluid Mech. 256 pp 163– (1993) [14] DOI: 10.1175/1520-0469(1976)033 2.0.CO;2 · doi:10.1175/1520-0469(1976)033 · doi:2.0.CO;2 [15] Craik, Proc. R. Soc. Lond. 406 pp 13– (1986) [16] Craik, J. Fluid Mech. 198 pp 275– (1989) [17] Tritton, J. Fluid Mech. 241 pp 503– (1992) [18] DOI: 10.1063/1.857730 · doi:10.1063/1.857730 [19] DOI: 10.1175/1520-0469(1981)038 2.0.CO;2 · doi:10.1175/1520-0469(1981)038 · doi:2.0.CO;2 [20] DOI: 10.1063/1.857575 · Zbl 0708.76070 · doi:10.1063/1.857575 [21] Cambon, J. Méc. Théo. Appl. 4 pp 629– (1985) [22] Cambon, J. Fluid Mech. 202 pp 295– (1989) [23] Ayleigh, Proc. R. Soc. Lond. 93 pp 148– (1916) · doi:10.1098/rspa.1917.0010 [24] Cambon, J. Fluid Mech. 251 pp 641– (1993) [25] DOI: 10.1103/PhysRevLett.57.2157 · doi:10.1103/PhysRevLett.57.2157 [26] DOI: 10.1016/0169-5983(94)90010-8 · doi:10.1016/0169-5983(94)90010-8 [27] Pedley, J. Fluid Mech. 35 pp 97– (1969) [28] Johnston, J. Fluid Mech. 56 pp 533– (1972) [29] Jacquin, J. Fluid Mech. 220 pp 1– (1990) [30] DOI: 10.1063/1.1694822 · Zbl 0366.76045 · doi:10.1063/1.1694822 [31] Gence, J. Fluid Mech. 93 pp 501– (1979) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.