×

Model reduction of an elastic crankshaft for elastic multibody simulations. (English) Zbl 1275.70005

Summary: System analysis and optimization of combustion engines and engine components are increasingly supported by digital simulations. In the simulation process of combustion engines multi physics simulations are used. As an example, in the simulation of a crank drive the mechanical subsystem is coupled to a hydrodynamic subsystem. As far as the modeling of the mechanical subsystems is concerned, elastic multibody systems are frequently used. During the simulation many equations must be solved simultaneously, the hydrodynamic equations as well as the equations of motion of each body in the elastic multibody system. Since the discretization of the elastic bodies, e.g with the help of the finite element method, introduces a large number of elastic degrees of freedom, an efficient simulation of the system becomes difficult. The linear model reduction of the elastic degrees of freedom is a key step for using flexible bodies in multibody systems and turning simulations more efficient from a computational point of view. In recent years, a variety of new reduction methods alongside the traditional techniques were developed in applied mathematics. Some of these methods are reviewed and compared for reducing the equations of motion of an elastic body used in multibody systems. The special focus of this work is on balanced truncation model order reduction, which is a singular value based reduction technique using the Gramian matrices of the system. We investigate a version of this method that is adapted to the structure of a special class of second order dynamical systems which is important for the particular application discussed here. The simulation of a crank drive with a flexible crankshaft is taken as technically relevant example. The results are compared to other methods like Krylov approaches or modal reduction.

MSC:

70E55 Dynamics of multibody systems
65L99 Numerical methods for ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Antoulas, Int. J. Appl. Math. Comput. Sci. 11(5) pp 1093– (2001)
[2] A. Antoulas
[3] M. Arnold W. Schiehlen
[4] Bai, SIAM J. Sci. Comput. 26 pp 1692– (2005) · Zbl 1078.65058 · doi:10.1137/040605552
[5] Bai, SIAM J. Matrix Anal. Appl. 26(3) pp 640– (2005) · Zbl 1080.65024 · doi:10.1137/S0895479803438523
[6] M. Bargende
[7] Bartels, Commun. ACM 15(9) pp 820– (1972) · Zbl 1372.65121 · doi:10.1145/361573.361582
[8] Benner, IEEE Control Syst. Mag. 14(1) pp 44– (2004) · doi:10.1109/MCS.2004.1272745
[9] Benner, GAMM Mitt. 29(2) pp 275– (2006) · Zbl 1157.93337 · doi:10.1002/gamm.201490034
[10] P. Benner P. Kürschner J. Saak
[11] P. Benner P. Kürschner J. Saak 12 01
[12] Benner, Linear Algebr. Appl. 15(9) pp 755– (2008) · Zbl 1212.65245 · doi:10.1002/nla.622
[13] P. Benner J. Saak
[14] Benner, Math. Comput, Model. Dyn. Syst. 17(2) pp 123– (2011) · Zbl 1221.93039 · doi:10.1080/13873954.2010.540822
[15] Chahlaoui, Linear Algebr. Appl. 415(2-3) pp 378– (2006)
[16] Craig, AIAA J. 6(7) pp 1313– (1968)
[17] R. Craig
[18] R. Craig A. Kurdila
[19] C. Daniel E. Woschke J. Strackeljan
[20] I. Duff A. Erisman J. Reid
[21] J. Fehr
[22] Fehr, J. Comput. Nonlinear Dyn. 5(3) pp 031005– (2010) · doi:10.1115/1.4001372
[23] Fehr, Multibody Syst. Dyn. 25(3) pp 313– (2011) · Zbl 1243.70002 · doi:10.1007/s11044-010-9238-3
[24] J. Fehr C. Tobias P. Eberhard
[25] Gallivan, SIAM J. Matrix Anal. Appl. 26(2) pp 328– (2004) · Zbl 1078.41016 · doi:10.1137/S0895479803423925
[26] Gawronski, Int. J. Syst. Sci. 21(1) pp 349– (1990) · Zbl 0692.93007 · doi:10.1080/00207729008910366
[27] Grasedyck, Numer. Linear Algebr. Appl. 11 pp 371– (2004) · Zbl 1164.65381 · doi:10.1002/nla.366
[28] E. Grimme
[29] Gugercin, SIAM J. Matrix Anal. Appl. 30(2) pp 609– (2008) · Zbl 1159.93318 · doi:10.1137/060666123
[30] Guyan, AIAA J. 3(2) pp 380– (1965) · doi:10.2514/3.2874
[31] Hammarling, IMA J. Numer. Anal. 2(3) pp 303– (1982) · Zbl 0492.65017 · doi:10.1093/imanum/2.3.303
[32] Hurty, AIAA J. 3 pp 678– (1965) · doi:10.2514/3.2947
[33] G. Knoll J. Lang R. Schönen
[34] G. Knoll R. Lechtape-Güteer R. Schönen C. Träbing J. Lange
[35] Koutsovasilis, Multibody Syst. Dyn. 20(2) pp 111– (2008) · Zbl 1332.70024 · doi:10.1007/s11044-008-9116-4
[36] Leger, Earthq. Eng. Struct. Dyn. 16(1) pp 23– (1988) · doi:10.1002/eqe.4290160103
[37] M. Lehner
[38] Lehner, at - Automatisierungstechnik 54 pp 170– (2006) · doi:10.1524/auto.2006.54.4.170
[39] Li, SIAM J. Matrix Anal. Appl. 24(1) pp 260– (2002) · Zbl 1016.65024 · doi:10.1137/S0895479801384937
[40] J. Lienemann
[41] Meyer, IEEE Trans. Autom. Control 41(11) pp 1632– (1996) · Zbl 0859.93015 · doi:10.1109/9.544000
[42] Moore, IEEE Trans. Autom. Control 26(1) pp 17– (1981) · Zbl 0464.93022 · doi:10.1109/TAC.1981.1102568
[43] Nowakowski, at - Automatisierungstechnik 59(8) pp 512– (2011) · doi:10.1524/auto.2011.0929
[44] C. Nowakowski J. Fehr P. Eberhard
[45] Penzl, SIAM J. Sci. Comput. 21(4) pp 1401– (1999) · Zbl 0958.65052 · doi:10.1137/S1064827598347666
[46] Reis, Math. Comput. Model. Dyn. Syst. 14(5) pp 391– (2008) · Zbl 1151.93010 · doi:10.1080/13873950701844170
[47] J. Saad
[48] J. Saak
[49] Salimbahrami, Linear Algebr. Appl. 415(2-3) pp 385– (2006) · Zbl 1103.93017 · doi:10.1016/j.laa.2004.12.013
[50] W. Schiehlen P. Eberhard
[51] W. Schilders H. van der Vorst J. Rommes
[52] R. Schwertassek O. Wallrapp
[53] Shabana, J. Sound Vib. 192 pp 389– (1996) · doi:10.1006/jsvi.1996.0193
[54] Shabana, Multibody Syst. Dyn. 1(2) pp 159– (1997)
[55] Simoncini, SIAM J. Sci. Comput. 29(3) pp 1268– (2007) · Zbl 1146.65038 · doi:10.1137/06066120X
[56] D. Sorensen Y. Zhou
[57] Tisseur, SIAM Rev. 43(2) pp 235– (2001) · Zbl 0985.65028 · doi:10.1137/S0036144500381988
[58] R. van Basshuysen F. Schäfer
[59] R. van Basshysen F. Schäfer
[60] Wachspress, Appl. Math. Lett. 107 pp 87– (1988) · Zbl 0631.65037 · doi:10.1016/0893-9659(88)90183-8
[61] E. Wachspress
[62] K. Willner
[63] Yan, IEEE Trans. Circuit Syst. II 55(9) pp 942– (2008)
[64] S. Zima
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.