zbMATH — the first resource for mathematics

Two-dimensional partially ionized magnetohydrodynamic turbulence. (English) Zbl 1460.76920
Summary: Ionization occurs in the upper atmospheres of hot Jupiters and in the interiors of gas giant planets, leading to magnetohydrodynamic (MHD) effects that couple the momentum and the magnetic field, thereby significantly altering the dynamics. In regions of moderate temperatures, the gas is only partially ionized, which also leads to interactions with neutral molecules. To explore the turbulent dynamics of these regions, we utilize partially ionized magnetohydrodynamics (PIMHD), a two-fluid model – one neutral and one ionized – coupled by a collision term proportional to the difference in velocities. Motivated by planetary settings where rotation constrains the large-scale motions to be mostly two-dimensional, we perform a suite of simulations to examine the parameter space of two-dimensional PIMHD turbulence and pay particular attention to collisions and their role in the dynamics, dissipation and energy exchange between the two species. We arrive at, and numerically confirm, an expression for the energy loss due to collisions in both the weakly and strongly collisional limits, and show that, in the latter limit, the neutral fluid couples to the ions and behaves as an MHD fluid. Finally, we discuss some implications of our findings to current understanding of gas giant planet atmospheres.
76W05 Magnetohydrodynamics and electrohydrodynamics
85A20 Planetary atmospheres
Full Text: DOI
[1] Agrawal, R., Alexakis, A., Brachet, M. E. & Tuckerman, L. S.2020Turbulent cascade, bottleneck, and thermalized spectrum in hyperviscous flows. Phys. Rev. Fluids5, 024601.
[2] Alexakis, A. & Biferale, L.2018Cascades and transitions in turbulent flows. Phys. Rep.767-769, 1-101.
[3] Alexakis, A. & Brachet, M.-E.2019On the thermal equilibrium state of large-scale flows. J. Fluid Mech.872, 594-625. · Zbl 1430.76202
[4] Bagenal, F., Dowling, T. E. & Mckinnon, W. B.2006Jupiter: The Planet, Satellites and Magnetosphere, vol. 1. Cambridge University Press.
[5] Balbus, S. A.2009 Magnetohydrodynamics of protostellar disks. arXiv:0906.0854.
[6] Ballester, J. L., Alexeev, I., Collados, M., Downes, T., Pfaff, R. F., Gilbert, H., Khodachenko, M., Khomenko, E., Shaikhislamov, I. F., Soler, R., et al.2018Partially ionized plasmas in astrophysics. Space Sci. Rev.214 (2), 58.
[7] Batygin, K., Stanley, S. & Stevenson, D. J.2013Magnetically controlled circulation on hot extrasolar planets. Astrophys. J.776 (1), 53.
[8] Batygin, K. & Stevenson, D. J.2010Inflating hot Jupiters with ohmic dissipation. Astrophys. J. Lett.714 (2), L238.
[9] Busse, F. H.1976A simple model of convection in the Jovian atmosphere. Icarus29 (2), 255-260.
[10] Cao, H. & Stevenson, D. J.2017Zonal flow magnetic field interaction in the semi-conducting region of giant planets. Icarus296, 59-72.
[11] Chai, J., Jansen, M. & Vallis, G. K.2016Equilibration of a baroclinic planetary atmosphere toward the limit of vanishing bottom friction. J. Atmos. Sci.73 (8), 3249-3272.
[12] Chan, C.-K., Mitra, D. & Brandenburg, A.2012Dynamics of saturated energy condensation in two-dimensional turbulence. Phys. Rev. E85, 036315.
[13] Cho, J. Y. K. & Polvani, L. M.1996The emergence of jets and vortices in freely evolving, shallow-water turbulence on a sphere. Phys. Fluids8 (6), 1531-1552. · Zbl 1087.76057
[14] Dietrich, W. & Jones, C. A.2018Anelastic spherical dynamos with radially variable electrical conductivity. Icarus305, 15-32.
[15] Dowling, T. E. & Ingersoll, A. P.1988Potential vorticity and layer thickness variations in the flow around Jupiter’s great red spot and white oval BC. J. Atmos. Sci.45 (8), 1380-1396.
[16] Dowling, T. E. & Ingersoll, A. P.1989Jupiter’s great red spot as a shallow water system. J. Atmos. Sci.46 (21), 3256-3278.
[17] Draine, B. T.1980Interstellar shock waves with magnetic precursors. Astrophys. J.241, 1021-1038.
[18] Draine, B. T.1986Multicomponent, reacting MHD flows. Mon. Not. R. Astron. Soc.220 (1), 133-148. · Zbl 0611.76124
[19] Duarte, L. D. V., Wicht, J. & Gastine, T.2018Physical conditions for Jupiter-like dynamo models. Icarus299, 206-221.
[20] Falle, S. A. E. G.2003A numerical scheme for multifluid magnetohydrodynamics. Mon. Not. R. Astron. Soc.344 (4), 1210-1218.
[21] French, M., Becker, A., Lorenzen, W., Nettelmann, N., Bethkenhagen, M., Wicht, J. & Redmer, R.2012Ab initio simulations for material properties along the Jupiter adiabat. Astrophys. J. Suppl. Ser.202 (1), 5.
[22] Gallet, B. & Young, W. R.2013A two-dimensional vortex condensate at high Reynolds number. J. Fluid Mech.715, 359-388. · Zbl 1284.76108
[23] Gastine, T., Wicht, J., Duarte, L. D. V., Heimpel, M. & Becker, A.2014Explaining Jupiter’s magnetic field and equatorial jet dynamics. Geophys. Res. Lett.41 (15), 5410-5419.
[24] Glatzmaier, G. A.2008A note on ‘Constraints on deep-seated zonal winds inside Jupiter and Saturn’. Icarus196 (2), 665-666.
[25] Glatzmaier, G. A., Evonuk, M. & Rogers, T. M.2009Differential rotation in giant planets maintained by density-stratified turbulent convection. Geophys. Astrophys. Fluid Dyn.103 (1), 31-51.
[26] Gómez, D. O., Mininni, P. D. & Dmitruk, P.2005Parallel simulations in turbulent MHD. Phys. Scr.2005 (T116), 123.
[27] Guillot, T.2005The interiors of giant planets: models and outstanding questions. Annu. Rev. Earth Planet. Sci.33 (1), 493-530.
[28] Heimpel, M., Gastine, T. & Wicht, J.2016Simulation of deep-seated zonal jets and shallow vortices in gas giant atmospheres. Nat. Geosci.9 (1), 19-23.
[29] Jones, C. A.2014A dynamo model of Jupiter’s magnetic field. Icarus241, 148-159.
[30] Jones, C. A., Boronski, P., Brun, A. S., Glatzmaier, G. A., Gastine, T., Miesch, M. S. & Wicht, J.2011Anelastic convection-driven dynamo benchmarks. Icarus216 (1), 120-135.
[31] Kaspi, Y., Galanti, E., Hubbard, W. B., Stevenson, D. J., Bolton, S. J., Iess, L., Guillot, T., Bloxham, J., Connerney, J. E. P., Cao, H., et al.2018Jupiter’s atmospheric jet streams extend thousands of kilometres deep. Nature555, 223-226.
[32] Khodachenko, M. L., Arber, T. D., Rucker, H. O. & Hanslmeier, A.2004Collisional and viscous damping of MHD waves in partially ionized plasmas of the solar atmosphere. Astron. Astrophys.422, 1073-1084.
[33] Khomenko, E. & Collados, M.2012Heating of the magnetized solar chromosphere by partial ionization effects. Astrophys. J.747 (2), 87.
[34] Koll, D. D. B. & Komacek, T. D.2018Atmospheric circulations of hot Jupiters as planetary heat engines. Astrophys. J.853 (2), 133.
[35] Koskinen, T. T., Yelle, R. V., Lavvas, P. & Cho, J. Y. K.2014Electrodynamics on extrasolar giant planets. Astrophys. J.796 (1), 16.
[36] Lazarian, A., Vishniac, E. T. & Cho, J.2004Magnetic field structure and stochastic reconnection in a partially ionized gas. Astrophys. J.603 (1), 180-197.
[37] Leake, J. E., Devore, C. R., Thayer, J. P., Burns, A. G., Crowley, G., Gilbert, H. R., Huba, J. D., Krall, J., Linton, M. G., Lukin, V. S., et al.2014Ionized plasma and neutral gas coupling in the Sun’s chromosphere and Earth’s ionosphere/thermosphere. Space Sci. Rev.184 (1-4), 107-172.
[38] Leake, J. E., Lukin, V. S. & Linton, M. G.2013Magnetic reconnection in a weakly ionized plasma. Phys. Plasmas20 (6), 061202.
[39] Leake, J. E., Lukin, V. S., Linton, M. G. & Meier, E. T.2012Multi-fluid simulations of chromospheric magnetic reconnection in a weakly ionized reacting plasma. Astrophys. J.760 (2), 109.
[40] Lian, Y. & Showman, A. P.2008Deep jets on gas-giant planets. Icarus194 (2), 597-615.
[41] Lian, Y. & Showman, A. P.2010Generation of equatorial jets by large-scale latent heating on the giant planets. Icarus207 (1), 373-393.
[42] Liu, J., Goldreich, P. M. & Stevenson, D. J.2008Constraints on deep-seated zonal winds inside Jupiter and Saturn. Icarus196 (2), 653-664.
[43] Malyshkin, L. M. & Zweibel, E. G.2011Onset of fast magnetic reconnection in partially ionized gases. Astrophys. J.739 (2), 1-12.
[44] Martínez-Sykora, J., De Pontieu, B., Hansteen, V. H., Rouppe Van Der Voort, L., Carlsson, M. & Pereira, T. M. D.2017On the generation of solar spicules and Alfvénic waves. Science356 (6344), 1269-1272.
[45] Meier, E. T.2011 Modeling plasmas with strong anisotropy, neutral fluid effects, and open boundaries. PhD thesis, University of Washington.
[46] Meier, E. T. & Shumlak, U.2012A general nonlinear fluid model for reacting plasma-neutral mixtures. Phys. Plasmas19 (7), 1-11.
[47] Menou, K.2012Magnetic scaling laws for the atmospheres of hot giant exoplanets. Astrophys. J.745 (2), 138.
[48] Meyer, C. D., Balsara, D. S., Burkhart, B. & Lazarian, A.2014Observational diagnostics for two-fluid turbulence in molecular clouds as suggested by simulations. Mon. Not. R. Astron. Soc.439 (3), 2197-2210.
[49] Nakano, T. & Umebayashi, T.1986Dissipation of magnetic fields in very dense interstellar clouds - I. Formulation and conditions for efficient dissipation. Mon. Not. R. Astron. Soc.218 (4), 663-684.
[50] Oishi, J. S. & Mac Low, M.-M.2006The inability of ambipolar diffusion to set a characteristic mass scale in molecular clouds. Astrophys. J.638 (1), 281-285.
[51] O’Neill, M. E., Emanuel, K. A. & Flierl, G. R.2015Polar vortex formation in giant-planet atmospheres due to moist convection. Nat. Geosci.8 (523), 523-526.
[52] O’Sullivan, S. & Downes, T. P.2007A three-dimensional numerical method for modelling weakly ionized plasmas. Mon. Not. R. Astron. Soc.376 (4), 1648-1658.
[53] Pandey, B. P. & Wardle, M.2008Hall magnetohydrodynamics of partially ionized plasmas. Mon. Not. R. Astron. Soc.385 (4), 2269-2278.
[54] Perna, R., Menou, K. & Rauscher, E.2010Magnetic drag on hot Jupiter atmospheric winds. Astrophys. J.719 (2), 1421-1426.
[55] Rhines, P. B.1975Waves and turbulence on a beta-plane. J. Fluid Mech.69 (3), 417-443.
[56] Rogers, T. M. & Mcelwaine, J. N.2017The hottest hot Jupiters may host atmospheric dynamos. Astrophys. J. Lett.841 (2), L26.
[57] Rogers, T. M. & Showman, A. P.2014Magnetohydrodynamic simulations of the atmosphere of HD 209458B. Astrophys. J. Lett.782 (1), L4.
[58] Schneider, T. & Liu, J.2009Formation of jets and equatorial superrotation on Jupiter. J. Atmos. Sci.66 (3), 579-601.
[59] Scott, R. K. & Polvani, L. M.2007Forced-dissipative shallow-water turbulence on the sphere and the atmospheric circulation of the giant planets. J. Atmos. Sci.64 (9), 3158-3176.
[60] Scott, R. K. & Polvani, L. M.2008Equatorial superrotation in shallow atmospheres. Geophys. Res. Lett.35 (24), 1-5.
[61] Seshasayanan, K. & Alexakis, A.2016Critical behavior in the inverse to forward energy transition in two-dimensional magnetohydrodynamic flow. Phys. Rev. E93 (1), 1-13. · Zbl 1383.76552
[62] Seshasayanan, K., Benavides, S. J. & Alexakis, A.2014On the edge of an inverse cascade. Phys. Rev. E90 (5), 1-5.
[63] Showman, A. P.2007Numerical simulations of forced shallow-water turbulence: effects of moist convection on the large-scale circulation of Jupiter and Saturn. J. Atmos. Sci.64 (9), 3132-3157.
[64] Smith, M. D. & Mac Low, M.-M.1997The formation of C-shocks: structure and signatures. Astron. Astrophys.326, 801-810.
[65] Smith, P. D. & Sakai, J. I.2008Chromospheric magnetic reconnection: two-fluid simulations of coalescing current loops. Astron. Astrophys.486, 569-575. · Zbl 1145.85314
[66] Song, P.2017A model of the solar chromosphere: structure and internal circulation. Astrophys. J.846 (2), 92.
[67] Stanley, S. & Glatzmaier, G. A.2010Dynamo models for planets other than Earth. Space Sci. Rev.152 (1-4), 617-649.
[68] Tilley, D. A. & Balsara, D. S.2010Direct evidence for two-fluid effects in molecular clouds. Mon. Not. R. Astron. Soc.406 (2), 1201-1207.
[69] Tobias, S. M., Diamond, P. H. & Hughes, D. W.\(2007 \beta \)-Plane magnetohydrodynamic turbulence in the solar tachocline. Astrophys. J.667, 113-116.
[70] Vasyliunas, V. M. & Song, P.2005Meaning of ionospheric Joule heating. J. Geophys. Res.110 (A2), 1-8.
[71] Warneford, E. S. & Dellar, P. J.2014Thermal shallow water models of geostrophic turbulence in Jovian atmospheres. Phys. Fluids26 (1), 016603. · Zbl 1321.85002
[72] Wicht, J. & Tilgner, A.2010Theory and modeling of planetary dynamos. Space Sci. Rev.152 (1), 501-542.
[73] Xu, S. & Lazarian, A.2017Magnetohydrodynamic turbulence and turbulent dynamo in partially ionized plasma. New J. Phys.19 (6), 065005.
[74] Xu, S., Yan, H. & Lazarian, A.2016Damping of magnetohydrodynamic turbulence in partially ionized plasma: implications for comsic ray propagation. Astrophys. J.826 (2), 166.
[75] Zaghoo, M.2018Dynamic conductivity and partial ionization in dense fluid hydrogen. Phys. Rev. E97, 043205.
[76] Zaqarashvili, T. V., Khodachenko, M. L. & Rucker, H. O.2011Magnetohydrodynamic waves in solar partially ionized plasmas: two-fluid approach. Astron. Astrophys.529, A82.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.