×

zbMATH — the first resource for mathematics

A geometrically exact isogeometric beam for large displacements and contacts. (English) Zbl 1441.74103
Summary: This work discusses an efficient formulation of a geometrically exact three-dimensional beam which can be used in dynamical simulations involving large displacements, collisions and non-linear materials. To this end, we base our model on the shear-flexible Cosserat rod theory, and we implement it in the context of Isogeometric Analysis (IGA). According to the IGA approach, the centerline of the beam is parameterized using splines; in our work, the rotation of the section is parameterized by a spline interpolation of quaternions, and time integration of rotations is performed using the exponential map of quaternions. Aiming at an efficient and robust simulation of contacts, we propose the adoption of a non-smooth dynamics formulation based on differential-variational inequalities. The model has been implemented in an open-source physics simulation library that can simulate actuators, finite elements, rigid bodies, constraints, collisions and frictional contacts. This beam model has been tested on various benchmarks in order to assess its validity in non-linear static and dynamic analysis; in all cases the model behaved consistently with theoretical results and experimental data.
MSC:
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
65D07 Numerical computation using splines
74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74M15 Contact in solid mechanics
Software:
Chrono; ISOGAT
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 39, 4135-4195 (2005) · Zbl 1151.74419
[2] Cottrell, J. A.; Hughes, T. J.R.; Reali, A., Studies of refinement and continuity in isogeometric structural analysis, Comput. Methods Appl. Mech. Engrg., 196, 41, 4160-4183 (2007) · Zbl 1173.74407
[3] Cottrell, J. A.; Reali, A.; Bazilevs, Y.; Hughes, T. J.R., Isogeometric analysis of structural vibrations, Comput. Methods Appl. Mech. Engrg., 195, 41, 5257-5296 (2006), John H. Argyris Memorial Issue. Part II · Zbl 1119.74024
[4] Benson, D. J.; Bazilevs, Y.; Hsu, M. C.; Hughes, T. J.R., Isogeometric shell analysis: The Reissner-Mindlin shell, Comput. Methods Appl. Mech. Engrg., 199, 5-8, 276-289 (2010) · Zbl 1227.74107
[5] Vuong, A.-V.; Giannelli, C.; Jüttler, B.; Simeon, B., A hierarchical approach to adaptive local refinement in isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 200, 49, 3554-3567 (2011) · Zbl 1239.65013
[6] Bazilevs, Y.; Calo, V. M.; Cottrell, J. A.; Evans, J. A.; Hughes, T. J.R.; Lipton, S.; Scott, M. A.; Sederberg, T. W., Isogeometric analysis using T-splines, Comput. Methods Appl. Mech. Engrg., 199, 5, 229-263 (2010), Computational Geometry and Analysis · Zbl 1227.74123
[7] Bazilevs, Y.; Calo, V. M.; Hughes, T. J.R.; Zhang, Y., Isogeometric fluid-structure interaction: theory, algorithms, and computations, Comput. Mech., 43, 1, 3-37 (2008) · Zbl 1169.74015
[8] De Lorenzis, L.; Wriggers, P.; Zavarise, G., A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method, Comput. Mech., 49, 1, 1-20 (2012) · Zbl 1356.74146
[9] Temizer, I.; Abdalla, M. M.; Gürdal, Z., An interior point method for isogeometric contact, Comput. Methods Appl. Mech. Engrg., 276, 589-611 (2014) · Zbl 1423.74682
[10] Jung, Pascal; Leyendecker, Sigrid; Linn, Joachim; Ortiz, Michael, A discrete mechanics approach to the Cosserat rod theory - part 1: static equilibria, Internat. J. Numer. Methods Engrg., 85, 1, 31-60 (2011) · Zbl 1217.74069
[11] Crisfield, M. A., A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements, Comput. Methods Appl. Mech. Engrg., 81, 2, 131-150 (1990) · Zbl 0718.73085
[12] Felippa, C. A.; Haugen, B., A unified formulation of small-strain corotational finite elements: I. theory, Comput. Methods Appl. Mech. Engrg., 194, 21?24, 2285-2335 (2005), Computational Methods for Shells · Zbl 1093.74055
[13] F. Cosserat, E. Cosserat, Théorie des corps déformables, A. Hermann et fils, 1909. · JFM 40.0862.02
[14] Reissner, E., On one-dimensional large-displacement finite-strain beam theory, Stud. Appl. Math., 52, 2, 87-95 (1973) · Zbl 0267.73032
[15] Antman, Stuart S., Kirchhoff’s problem for nonlinearly elastic rods, Quart. Appl. Math., 32, 3, 221-240 (1974) · Zbl 0302.73031
[16] Simo, J. C., A finite strain beam formulation. the three-dimensional dynamic problem. part I, Comput. Methods Appl. Mech. Engrg., 49, 55-70 (1985) · Zbl 0583.73037
[17] Timoshenko, S. P., On the correction for shear of the differential equation for transverse vibrations of prismatic bars, Lond. Edinburgh Dublin Phil. Mag. J. Sci., 41, 245, 744-746 (1921)
[18] Greco, L.; Cuomo, M., B-spline interpolation of Kirchhoff-Love space rods, Comput. Methods Appl. Mech. Engrg., 256, 251-269 (2013) · Zbl 1352.74153
[19] Weeger, Oliver; Wever, Utz; Simeon, Bernd, Isogeometric analysis of nonlinear Euler-Bernoulli beam vibrations, Nonlinear Dynam., 72, 4, 813-835 (2013) · Zbl 1284.74134
[20] Bouclier, Robin; Elguedj, Thomas; Combescure, Alain, Locking free isogeometric formulations of curved thick beams, Comput. Methods Appl. Mech. Engrg., 245-246, 144-162 (2012) · Zbl 1354.74260
[21] da Veiga, L. Beirão; Lovadina, C.; Reali, A., Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods, Comput. Methods Appl. Mech. Engrg., 241-244, 38-51 (2012) · Zbl 1353.74045
[22] Auricchio, F.; da Veiga, L. Beirão; Kiendl, J.; Lovadina, C.; Reali, A., Locking-free isogeometric collocation methods for spatial Timoshenko rods, Comput. Methods Appl. Mech. Engrg., 263, 113-126 (2013) · Zbl 1286.74057
[23] Wriggers, P.; Zavarise, G., On contact between three-dimensional beams undergoing large deflections, Commun. Numer. Methods. Eng., 13, 6, 429-438 (1997) · Zbl 0878.73063
[24] Zavarise, G.; Wriggers, P., Contact with friction between beams in 3-D space, Internat. J. Numer. Methods Engrg., 49, 8, 977-1006 (2000) · Zbl 0993.74045
[25] Litewka, Przemysaw; Wriggers, Peter, Contact between 3D beams with rectangular cross-sections, Internat. J. Numer. Methods Engrg., 53, 9, 2019-2041 (2002) · Zbl 1169.74617
[26] Litewka, P.; Wriggers, P., Frictional contact between 3D beams, Comput. Mech., 28, 1, 26-39 (2002) · Zbl 1115.74351
[27] Chamekh, Mourad; Mani-Aouadi, Saloua; Moakher, Maher, Modeling and numerical treatment of elastic rods with frictionless self-contact, Comput. Methods Appl. Mech. Engrg., 198, 47, 3751-3764 (2009) · Zbl 1230.74100
[28] Gay Neto, Alfredo; Pimenta, Paulo M.; Wriggers, Peter, Self-contact modeling on beams experiencing loop formation, Comput. Mech., 55, 1, 193-208 (2015) · Zbl 1311.74088
[29] Konyukhov, Alexander; Schweizerhof, Karl, Geometrically exact covariant approach for contact between curves, Comput. Methods Appl. Mech. Engrg., 199, 37, 2510-2531 (2010) · Zbl 1231.74325
[30] Meier, Christoph; Popp, Alexander; Wall, Wolfgang A., A finite element approach for the line-to-line contact interaction of thin beams with arbitrary orientation, Comput. Methods Appl. Mech. Engrg., 308, 377-413 (2016)
[31] Meier, Christoph; Wall, Wolfgang A.; Popp, Alexander, A unified approach for beam-to-beam contact, Comput. Methods Appl. Mech. Engrg., 315, 972-1010 (2017)
[32] Weeger, Oliver; Narayanan, Bharath; Dunn, Martin L., Isogeometric collocation for nonlinear dynamic analysis of Cosserat rods with frictional contact, Nonlinear Dynam., 91, 2, 1213-1227 (2018)
[33] Weeger, Oliver; Yeung, Sai-Kit; Dunn, Martin L., Isogeometric collocation methods for Cosserat rods and rod structures, Comput. Methods Appl. Mech. Engrg., 316, 100-122 (2017), Special Issue on Isogeometric Analysis: Progress and Challenges
[34] Weeger, Oliver; Narayanan, Bharath; DeLorenzis, Laura; Kiendl, Josef; Dunn, MartinL, An isogeometric collocation method for frictionless contact of Cosserat rods, Comput. Methods Appl. Mech. Engrg., 321, 361-382 (2017)
[35] Moreau, J. J., Unilateral contact and dry friction in finite freedom dynamics, (Moreau, J. J.; Panagiotopoulos, P. D., Nonsmooth Mechanics and Applications (1988), Springer-Verlag: Springer-Verlag Berlin), 1-82 · Zbl 0703.73070
[36] Jean, M.; Moreau, J. J., Dynamics in the presence of unilateral contacts and dry friction: A numerical approach, (Del Piero, G.; Maceri, F., Unilateral Problems in Structural Analysis — 2 (1987), Springer Vienna: Springer Vienna Vienna), 151-196 · Zbl 0780.73069
[37] Stewart, D. E., Convergence of a time-stepping scheme for rigid body dynamics and resolution of Painlevé’s problems, Arch. Ration. Mech. Anal., 145, 3, 215-260 (1998) · Zbl 0922.70004
[38] Anitescu, Mihai; Hart, Gary D., A fixed-point iteration approach for multibody dynamics with contact and friction, Math. Program. Ser. B, 101, 1, 3-32 (2004), (ANL/MCS-P985-0802) · Zbl 1148.70303
[39] Pfeiffer, Friedrich; Glocker, Christian, Multibody Dynamics with Unilateral Contacts (1996), John Wiley: John Wiley New York City · Zbl 0922.70001
[40] Negrut, Dan; Tasora, Alessandro; Mazhar, Hammad; Heyn, Toby; Hahn, Philipp, Leveraging parallel computing in multibody dynamics, Multibody Syst. Dyn., 27, 95-117 (2012) · Zbl 1344.70003
[41] Bender, Jan; Erleben, Kenny; Trinkle, Jeff, Interactive simulation of rigid body dynamics in computer graphics, (Computer Graphics Forum, Vol. 33 (2014), Wiley Online Library), 246-270
[42] Mazhar, Hammad; Heyn, Toby; Negrut, Dan; Tasora, Alessandro, Using Nesterov’s method to accelerate multibody dynamics with friction and contact, ACM Trans. Graph., 34, 3, 32:1-32:14 (2015) · Zbl 1333.68258
[43] Heyn, Toby; Anitescu, Mihai; Tasora, Alessandro; Negrut, Dan, Using Krylov subspace and spectral methods for solving complementarity problems in many-body contact dynamics simulation, Internat. J. Numer. Methods Engrg., 95, 7, 541-561 (2013) · Zbl 1352.74206
[44] Mangoni, Dario; Tasora, Alessandro; Garziera, Rinaldo, A primal-dual predictor-corrector interior point method for non-smooth contact dynamics, Comput. Methods Appl. Mech. Engrg., 330, 351-367 (2018)
[45] Mazhar, H.; Heyn, T.; Pazouki, A.; Melanz, D.; Seidl, A.; Bartholomew, A.; Tasora, A.; Negrut, D., CHRONO: a parallel multi-physics library for rigid-body, flexible-body, and fluid dynamics, Mech. Sci., 4, 1, 49-64 (2013)
[46] Lang, Holger; Linn, Joachim; Arnold, Martin, Multi-body dynamics simulation of geometrically exact Cosserat rods, Multibody Syst. Dyn., 25, 3, 285-312 (2011) · Zbl 1271.74264
[47] Simo, J. C.; Vu-Quoc, L., A three-dimensional finite-strain rod model. part II: Computational aspects, Comput. Methods Appl. Mech. Engrg., 58, 1, 79-116 (1986) · Zbl 0608.73070
[48] Myoung-Jun Kim, Myung-Soo Kim, Sung Yong Shin, A general construction scheme for unit quaternion curves with simple high order deriva- tives. in: Computer Graphics (Proc. SIGGRAPH95), (1995) p. 369376.
[49] Myoung-Jun Kim, Myung-Soo Kim, Sung Yong Shin, A \(C^2\)-Continuous B-spline Quaterion Curve Interpolating a Given Sequence of Solid Orientations, in: Proc. Computer Animation Vol. 95, (1995) p. 7281,.
[50] Hughes, T. J.R.; Reali, A.; Sangalli, G., Efficient quadrature for NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 199, 5-8, 301-313 (2010) · Zbl 1227.65029
[51] Hillman, M.; Chen, J. S.; Bazilevs, Y., Variationally consistent domain integration for isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 284, 521-540 (2015), Isogeometric Analysis Special Issue · Zbl 1425.65161
[52] Adam, C.; Hughes, T. J.R.; Bouabdallah, S.; Zarroug, M.; Maitournam, H., Selective and reduced numerical integrations for NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 284, 732-761 (2015), Isogeometric Analysis Special Issue · Zbl 1425.65138
[53] Marino, Enzo, Locking-free isogeometric collocation formulation for three-dimensional geometrically exact shear-deformable beams with arbitrary initial curvature, Comput. Methods Appl. Mech. Engrg., 324, 546-572 (2017)
[54] Jay, L. O.; Negrut, D., Extensions of the HHT-\( \alpha\) method to Differential-Algebraic Equations in mechanics, Electron. Trans. Numer. Anal., 26, 190-208 (2007) · Zbl 1171.65417
[55] Gavrea, B.; Negrut, D.; Potra, F. A., The newmark integration method for simulation of multibody systems: analytical considerations, ASME International Mechanical Engineering Congress and Exposition, 1079-1092 (2005), arXiv:https://asmedigitalcollection.asme.org/IMECE/proceedings-pdf/IMECE2005/42150/1079/4717590/1079_1.pdf
[56] Negrut, Dan; Serban, Radu; Tasora, Alessandro, Posing multibody dynamics with friction and contact as a differential complementarity problem, J. Comput. Nonlinear Dyn., 13, 1, 014503 (2018)
[57] Brüls, Olivier; Acary, Vincent; Cardona, Alberto, On the constraints formulation in the nonsmooth generalized-\( \alpha\) method, (Advanced Topics in Nonsmooth Dynamics (2018), Springer), 335-374
[58] Pang, J. S.; Stewart, D. E., Differential variational inequalities, Math. Program., 113, 1-80 (2008)
[59] Andersen, Martin; Dahl, Joachim; Liu, Zhang; Vandenberghe, Lieven; Sra, S.; Nowozin, S.; Wright, S. J., Interior-point methods for large-scale cone programming, Optim. Mach. Learn., 5583 (2011)
[60] O.A. Bauchau, G. Wu, P. Betsch, A. Cardona, J. Gerstmayr, B. Jonker, P. Masarati, V. Sonneville, Validation of Flexible Multibody Dynamics Beam Formulations using Benchmark Problems, in: IMSD 2014, Korea, 2014. · Zbl 1359.70060
[61] Bauchau, Olivier A.; Kang, N. K., A multibody formulation for helicopter structural dynamic analysis, J. Am. Helicopter Soc., 38, 2, 3-14 (1993)
[62] Ghiringhelli, Gian Luca; Masarati, Pierangelo; Mantegazza, Paolo, A multi-body implementation of finite volume beams, AIAA J., 38, 1, 131-138 (2000)
[63] Dowell, E. H.; Traybar, J. J., An experimental study of the nonlinear stiffness of a rotor blade undergoing flap, lag, and twist deformations, Aerospace and Mechanical Science Report 1194 and 1257 (1975), Princeton University
[64] Tasora, Alessandro; Anitescu, Mihai, A matrix-free cone complementarity approach for solving large-scale, nonsmooth, rigid body dynamics, Comput. Methods Appl. Mech. Engrg., 200, 5-8, 439-453 (2011) · Zbl 1225.70004
[65] Masarati, Pierangelo, On the choice of the reference frame for beam section stiffness properties, Int. J. Solids Struct., 51, 13, 2439-2447 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.