×

New iterative methods for solving nonlinear problems with one and several unknowns. (English) Zbl 1427.65076

Summary: In this manuscript, a new type of study regarding the iterative methods for solving nonlinear models is presented. The goal of this work is to design a new fourth-order optimal family of two-step iterative schemes, with the flexibility through weight function/s or free parameter/s at both substeps, as well as small residual errors and asymptotic error constants. In addition, we generalize these schemes to nonlinear systems preserving the order of convergence. Regarding the applicability of the proposed techniques, we choose some real-world problems, namely chemical fractional conversion and the trajectory of an electron in the air gap between two parallel plates, in order to study the multi-factor effect, fractional conversion of species in a chemical reactor, Hammerstein integral equation, and a boundary value problem. Moreover, we find that our proposed schemes run better than or equal to the existing ones in the literature.

MSC:

65H10 Numerical computation of solutions to systems of equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Shacham, M.; An improved memory method for the solution of a nonlinear equation; Chem. Eng. Sci.: 1989; Volume 44 ,1495-1501.
[2] Balaji, G.V.; Seader, J.D.; Application of interval Newton’s method to chemical engineering problems; Reliab. Comput.: 1995; Volume 1 ,215-223. · Zbl 0838.65058
[3] Shacham, M.; Numerical solution of constrained nonlinear algebraic equations; Int. J. Numer. Method Eng.: 1986; Volume 23 ,1455-1481. · Zbl 0597.65044
[4] Shacham, M.; Kehat, E.; Converging interval methods for the iterative solution of nonlinear equations; Chem. Eng. Sci.: 1973; Volume 28 ,2187-2193.
[5] Moré, J.J.; ; A Collection of Nonlinear Model Problems: Providence, RI, USA 1990; Volume Volume 26 ,723-762. · Zbl 0695.65031
[6] Grosan, C.; Abraham, A.; A new approach for solving nonlinear equations systems; IEEE Trans. Syst. Man Cyber. Part A Syst. Hum.: 2008; Volume 38 ,698-714.
[7] Awawdeh, F.; On new iterative method for solving systems of nonlinear equations; Numer. Algorithms: 2010; Volume 54 ,395-409. · Zbl 1197.65048
[8] Tsoulos, I.G.; Stavrakoudis, A.; On locating all roots of systems of nonlinear equations inside bounded domain using global optimization methods; Nonlinear Anal. Real World Appl.: 2010; Volume 11 ,2465-2471. · Zbl 1193.65078
[9] Lin, Y.; Bao, L.; Jia, X.; Convergence analysis of a variant of the Newton method for solving nonlinear equations; Comput. Math. Appl.: 2010; Volume 59 ,2121-2127. · Zbl 1189.65100
[10] Ortega, J.M.; Rheinbolt, W.C.; ; Iterative Solutions of Nonlinears Equations in Several Variables: Cambridge, MA, USA 1970; . · Zbl 0241.65046
[11] Petković, M.S.; Neta, B.; Petković, L.D.; Dz̆unić, J.; ; Multipoint Methods for Solving Nonlinear Equations: Cambridge, MA, USA 2013; . · Zbl 1286.65060
[12] Traub, J.F.; ; Iterative Methods for the Solution of Equations: Englewood Cliffs, NJ, USA 1964; . · Zbl 0121.11204
[13] Amat, S.; Busquier, S.; ; Advances in Iterative Methods for Nonlinear Equations: Berlin, Germany 2016; Volume Volume 10 . · Zbl 1356.65002
[14] Nedzhibov, G.H.; A family of multi-point iterative methods for solving systems of nonlinear equations; J. Comput. Appl. Math.: 2008; Volume 222 ,244-250. · Zbl 1154.65037
[15] Jarratt, P.; Some fourth-order multipoint iterative methods for solving equations; Math. Comput.: 1966; Volume 20 ,434-437. · Zbl 0229.65049
[16] Khan, W.A.; Noor, K.I.; Bhattia, K.; Ansari, F.A.; A new fourth order Newton-type method for solution of system of nonlinear equations; Appl. Math. Comput.: 2015; Volume 270 ,724-730. · Zbl 1410.65187
[17] Hueso, J.L.; Martínez, E.; Teruel, C.; Convergence, Efficiency and Dynamics of new fourth and sixth order families of iterative methods for nonlinear systems; J. Comput. Appl. Math.: 2015; Volume 275 ,412-420. · Zbl 1334.65092
[18] Junjua, M.; Akram, S.; Yasmin, N.; Zafar, F.; A New Jarratt-Type Fourth-Order Method for Solving System of Nonlinear Equations and Applications; Appl. Math.: 2015; Volume 2015 ,805278. · Zbl 1435.65079
[19] Gutiérrez, J.M.; Hernández, M.A.; An acceleration of Newton’s method: Super-Halley method in a Banach space; Appl. Math. Comput.: 2001; Volume 117 ,223-239. · Zbl 1023.65051
[20] Chun, C.; Some second-derivative-free variants of Chebyshev’s Halley methods; Appl. Math. Comput.: 2007; Volume 191 ,410-414. · Zbl 1193.65054
[21] Kou, J.; Li, Y.; Wang, X.; Fourth-order iterative methods free from second derivative; Appl. Math. Comput.: 2007; Volume 184 ,880-885. · Zbl 1114.65046
[22] Noor, M.A.; Ahmad, F.; Fourth-order convergent iterative method for nonlinear equation; Appl. Math. Comput.: 2006; Volume 182 ,1149-1153. · Zbl 1114.65047
[23] Sharma, J.R.; Guha, R.K.; Sharma, R.; Some variants of Hansen-Patrick method with third and fourth order convergence; Appl. Math. Comput.: 2009; Volume 214 ,171-177. · Zbl 1179.65051
[24] Chun, C.; Neta, B.; Certain improvement of Newton’s method with fourth-order convergence; Appl. Math. Comput.: 2009; Volume 215 ,821-828. · Zbl 1192.65049
[25] Kung, H.T.; Traub, J.F.; Optimal order of one-point and multi-point iteration; J. ACM: 1974; Volume 21 ,643-651. · Zbl 0289.65023
[26] Abad, M.F.; Cordero, A.; Torregrosa, J.R.; A family of seventh-order schemes for solving nonlinear systems; Bull. Math. Soc. Sci. Math. Roum.: 2014; Volume 57 ,133-145. · Zbl 1413.65196
[27] Cordero, A.; Maimó, J.G.; Torregrosa, J.R.; Vassileva, M.P.; Solving nonlinear problems by Ostrowski-Chun type parametric families; Math. Chem.: 2014; Volume 52 ,430-449. · Zbl 1326.65061
[28] Hermite, C.; Sur la formule d’interpolation de Lagrange; Reine Angew. Math.: 1878; Volume 84 ,70-79. · JFM 09.0312.02
[29] Cordero, A.; Hueso, J.L.; Martínez, E.; Torregrosa, J.R.; A modified Newton-Jarratt’s composition; Numer. Algorithms: 2010; Volume 55 ,87-99. · Zbl 1251.65074
[30] Sharma, J.R.; Arora, H.; On efficient weighted-Newton methods for solving systems of nonlinear equations; Appl. Math. Comput.: 2013; Volume 222 ,497-506. · Zbl 1329.65106
[31] Ostrowski, A.M.; ; Solution of Equations and Systems of Equations: Englewood Cliffs, NJ, USA 1964; .
[32] Khattri, S.K.; Abbasbandy, S.; Optimal fourth order family of iterative methods; Mat. Vesnik: 2011; Volume 63 ,67-72. · Zbl 1265.65094
[33] Soleymani, F.; Khattri, S.K.; Vanani, S.K.; Two new classes of optimal Jarratt-type fourth-order methods; Appl. Math. Lett.: 2012; Volume 25 ,847-853. · Zbl 1239.65030
[34] Chun, C.; Some variants of King’s fourth-order family of methods for nonlinear equations; Appl. Math. Comput.: 2007; Volume 190 ,57-62. · Zbl 1122.65328
[35] King, R.F.; A family of fourth order methods for nonlinear equations; SIAM Numer. Anal.: 1973; Volume 10 ,876-879. · Zbl 0266.65040
[36] Cordero, A.; Hueso, J.L.; Martínez, E.; Torregrosa, J.R.; New modifications of Potra-Pták’s method with optimal fourth and eighth orders of convergence; Comput. Appl. Math.: 2010; Volume 234 ,2969-2976. · Zbl 1191.65048
[37] Cordero, A.; Torregrosa, J.R.; Variants of Newton’s method using fifth-order quadrature formulas; Appl. Math. Comput.: 2007; Volume 190 ,686-698. · Zbl 1122.65350
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.