×

A terminal velocity on the landscape: particle production near extra species loci in higher dimensions. (English) Zbl 1290.81100

Summary: We investigate particle production near extra species loci (ESL) in a higher dimensional field space and derive a speed limit in moduli space at weak coupling. This terminal velocity is set by the characteristic ESL-separation and the coupling of the extra degrees of freedom to the moduli, but it is independent of the moduli’s potential if the dimensionality of the field space is considerably larger than the dimensionality of the loci, \(D \gg d\). Once the terminal velocity is approached, particles are produced at a plethora of nearby ESLs, preventing a further increase in speed via their backreaction. It is possible to drive inflation at the terminal velocity, providing a generalization of trapped inflation with attractive features: we find that more than sixty e-folds of inflation for sub-Planckian excursions in field space are possible if ESLs are ubiquitous, without fine tuning of initial conditions and less tuned potentials. We construct a simple, observationally viable model with a slightly red scalar power-spectrum and suppressed gravitational waves; we comment on the presence of additional observational signatures originating from IR-cascading and individual massive particles. We also show that moduli-trapping at an ESL is suppressed for \(D \gg d\), hindering dynamical selection of high-symmetry vacua on the landscape based on this mechanism.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T60 Supersymmetric field theories in quantum mechanics
81T13 Yang-Mills and other gauge theories in quantum field theory
81V22 Unified quantum theories
83E15 Kaluza-Klein and other higher-dimensional theories
14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)
83F05 Relativistic cosmology

Software:

LATTICEEASY; DEFROST
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] S.H. Henry Tye, Brane inflation: string theory viewed from the cosmos, Lect. Notes Phys.737 (2008) 949 [hep-th/0610221] [SPIRES]. · Zbl 1153.83388 · doi:10.1007/978-3-540-74233-3_28
[2] J .M. Cline, String cosmology, hep-th/0612129 [SPIRES].
[3] C.P. Burgess, Lectures on cosmic inflation and its potential stringy realizations, PoS(P2GC)008 [arXiv:0708.2865] [SPIRES]. · Zbl 1128.83045
[4] D. Baumann and L. McAllister, Advances in inflation in string theory, Ann. Rev. Nucl. Part. Sci.59 (2009) 67 [arXiv:0901.0265] [SPIRES]. · doi:10.1146/annurev.nucl.010909.083524
[5] L. McAllister and E. Silverstein, String cosmology: a review, Gen. Rel. Grav.40 (2008) 565 [arXiv:0710.2951] [SPIRES]. · Zbl 1137.83304 · doi:10.1007/s10714-007-0556-6
[6] J . Bagger and I. Giannakis, Higgs mechanism in string theory, Phys. Rev.D 56 (1997) 2317 [hep-th/9703202] [SPIRES].
[7] S. Watson, Moduli stabilization with the string Higgs effect, Phys. Rev.D 70 (2004) 066005 [hep-th/0404177] [SPIRES].
[8] L. Kofman et al., Beauty is attractive: moduli trapping at enhanced symmetry points, JHEP05 (2004) 030 [hep-th/0403001] [SPIRES]. · doi:10.1088/1126-6708/2004/05/030
[9] J.H. Traschen and R.H. Brandenberger, Particle production during out-of-equilibrium phase transitions, Phys. Rev.D 42 (1990) 2491 [SPIRES].
[10] L. Kofman, A.D. Linde and A.A. Starobinsky, Towards the theory of reheating after inflation, Phys. Rev.D 56 (1997) 3258 [hep-ph/9704452] [SPIRES].
[11] L. Kofman, Preheating after inflation, Lect. Notes Phys.738 (2008) 55 [SPIRES]. · Zbl 1161.83302 · doi:10.1007/978-3-540-74353-8_2
[12] B.A. Bassett, S. Tsujikawa and D. Wands, Inflation dynamics and reheating, Rev. Mod. Phys.78 (2006) 537 [astro-ph/0507632] [SPIRES]. · doi:10.1103/RevModPhys.78.537
[13] S.P. Patil and R. Brandenberger, Radion stabilization by stringy effects in general relativity and dilaton gravity, Phys. Rev.D 71 (2005) 103522 [hep-th/0401037] [SPIRES].
[14] S.P. Patil and R.H. Brandenberger, The cosmology of massless string modes, JCAP01 (2006) 005 [hep-th/0502069] [SPIRES].
[15] S. Cremonini and S. Watson, Dilaton dynamics from production of tensionless membranes, Phys. Rev.D 73 (2006) 086007 [hep-th/0601082] [SPIRES].
[16] D.J.H. Chung, E.W. Kolb, A. Riotto and I.I. Tkachev, Probing Planckian physics: resonant production of particles during inflation and features in the primordial power spectrum, Phys. Rev.D 62 (2000) 043508 [hep-ph/9910437] [SPIRES].
[17] D. Green, B. Horn, L. Senatore and E. Silverstein, Trapped inflation, Phys. Rev.D 80 (2009) 063533 [arXiv:0902.1006] [SPIRES].
[18] E. Silverstein and A. Westphal, Monodromy in the CMB: gravity waves and string inflation, Phys. Rev.D 78 (2008) 106003 [arXiv:0803.3085] [SPIRES].
[19] E. Witten, Bound states of strings and p-branes, Nucl. Phys.B 460 (1996) 335 [hep-th/9510135] [SPIRES]. · Zbl 1003.81527 · doi:10.1016/0550-3213(95)00610-9
[20] N. Seiberg and E. Witten, Monopole condensation, and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys.B 426 (1994) 19 [Erratum ibid.B 430 (1994) 485] [hep-th/9407087] [SPIRES]. · Zbl 0996.81510 · doi:10.1016/0550-3213(94)90124-4
[21] N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys.B 431 (1994) 484 [hep-th/9408099] [SPIRES]. · Zbl 1020.81911 · doi:10.1016/0550-3213(94)90214-3
[22] K.A. Intriligator and N. Seiberg, Lectures on supersymmetric gauge theories and electric-magnetic duality, Nucl. Phys. Proc. Suppl.45BC (1996) 1 [hep-th/9509066] [SPIRES]. · Zbl 0991.81588 · doi:10.1016/0920-5632(95)00626-5
[23] A. Strominger, Massless black holes and conifolds in string theory, Nucl. Phys.B 451 (1995) 96 [hep-th/9504090] [SPIRES]. · Zbl 0925.83071 · doi:10.1016/0550-3213(95)00287-3
[24] E. Witten, String theory dynamics in various dimensions, Nucl. Phys.B 443 (1995) 85 [hep-th/9503124] [SPIRES]. · Zbl 0990.81663 · doi:10.1016/0550-3213(95)00158-O
[25] S.H. Katz, D.R. Morrison and M. Ronen Plesser, Enhanced gauge symmetry in type II string theory, Nucl. Phys.B 477 (1996) 105 [hep-th/9601108] [SPIRES]. · Zbl 0925.81188 · doi:10.1016/0550-3213(96)00331-8
[26] M. Bershadsky et al., Geometric singularities and enhanced gauge symmetries, Nucl. Phys.B 481 (1996) 215 [hep-th/9605200] [SPIRES]. · Zbl 1049.81581 · doi:10.1016/S0550-3213(96)90131-5
[27] E. Witten, Small instantons in string theory, Nucl. Phys.B 460 (1996) 541 [hep-th/9511030] [SPIRES]. · Zbl 0935.81052 · doi:10.1016/0550-3213(95)00625-7
[28] L. Susskind, The anthropic landscape of string theory, hep-th/0302219 [SPIRES]. · Zbl 1188.83105
[29] B. Greene, S. Judes, J. Levin, S. Watson and A. Weltman, Cosmological moduli dynamics, JHEP07 (2007) 060 [hep-th/0702220] [SPIRES]. · doi:10.1088/1126-6708/2007/07/060
[30] M. Dine, Towards a solution of the moduli problems of string cosmology, Phys. Lett.B 482 (2000) 213 [hep-th/0002047] [SPIRES]. · Zbl 0990.81099
[31] M. Dine, Y. Nir and Y. Shadmi, Enhanced symmetries and the ground state of string theory, Phys. Lett.B 438 (1998) 61 [hep-th/9806124] [SPIRES].
[32] E. Silverstein and D. Tong, Scalar speed limits and cosmology: acceleration from D-cceleration, Phys. Rev.D 70 (2004) 103505 [hep-th/0310221] [SPIRES].
[33] M. Alishahiha, E. Silverstein and D. Tong, DBI in the sky, Phys. Rev.D 70 (2004) 123505 [hep-th/0404084] [SPIRES].
[34] N. Barnaby, Z. Huang, L. Kofman and D. Pogosyan, Cosmological fluctuations from infra-red cascading during inflation, Phys. Rev.D 80 (2009) 043501 [arXiv:0902.0615] [SPIRES].
[35] N. Barnaby and Z. Huang, Particle production during inflation: observational constraints and signatures, Phys. Rev.D 80 (2009) 126018 [arXiv:0909.0751] [SPIRES].
[36] N. Itzhaki, The overshoot problem and giant structures, JHEP10 (2008) 061 [arXiv:0807.3216] [SPIRES]. · Zbl 1245.81185 · doi:10.1088/1126-6708/2008/10/061
[37] A. Fialkov, N. Itzhaki and E.D. Kovetz, Cosmological imprints of pre-inflationary particles, JCAP02 (2010) 004 [arXiv:0911.2100] [SPIRES].
[38] E.D. Kovetz, A. Ben-David and N. Itzhaki, Giant rings in the CMB sky, arXiv:1005.3923 [SPIRES].
[39] G.N. Felder and I. Tkachev, LATTICEEASY: a program for lattice simulations of scalar fields in an expanding universe, Comput. Phys. Commun.178 (2008) [hep-ph/0011159] [SPIRES]. · Zbl 1196.83005
[40] T. Prokopec and T.G. Roos, Lattice study of classical inflaton decay, Phys. Rev.D 55 (1997) 3768 [hep-ph/9610400] [SPIRES].
[41] A.V. Frolov, DEFROST: a new code for simulating preheating after inflation, JCAP11 (2008) 009 [arXiv:0809.4904] [SPIRES].
[42] S.Y. Khlebnikov and I.I. Tkachev, Classical decay of inflaton, Phys. Rev. Lett.77 (1996) 219 [hep-ph/9603378] [SPIRES]. · doi:10.1103/PhysRevLett.77.219
[43] S.Y. Khlebnikov and I.I. Tkachev, Resonant decay of Bose condensates, Phys. Rev. Lett.79 (1997) 1607 [hep-ph/9610477] [SPIRES]. · doi:10.1103/PhysRevLett.79.1607
[44] R.H. Brandenberger, A. Knauf and L.C. Lorenz, Reheating in a brane monodromy inflation model, JHEP10 (2008) 110 [arXiv:0808.3936] [SPIRES]. · doi:10.1088/1126-6708/2008/10/110
[45] S.H.H. Tye and J. Xu, A meandering inflaton, Phys. Lett.B 683 (2010) 326 [arXiv:0910.0849] [SPIRES].
[46] S.H.H. Tye, J. Xu and Y. Zhang, Multi-field inflation with a random potential, JCAP04 (2009) 018 [arXiv:0812.1944] [SPIRES].
[47] Q.-G. Huang and S.H.H. Tye, The cosmological constant problem and inflation in the string landscape, Int. J. Mod. Phys.A 24 (2009) 1925 [arXiv:0803.0663] [SPIRES]. · Zbl 1170.83458
[48] J.R. Ellis, J.E. Kim and D.V. Nanopoulos, Cosmological gravitino regeneration and decay, Phys. Lett.B 145 (1984) 181 [SPIRES].
[49] M.Y. Khlopov and A.D. Linde, Is it easy to save the gravitino?, Phys. Lett.B 138 (1984) 265 [SPIRES].
[50] M. Kawasaki, K. Kohri, T. Moroi and A. Yotsuyanagi, Big-Bang nucleosynthesis and gravitino, Phys. Rev.D 78 (2008) 065011 [arXiv:0804.3745] [SPIRES].
[51] D. Battefeld and T. Battefeld, The relic problem of string gas cosmology, Phys. Rev.D 80 (2009) 063518 [arXiv:0907.2443] [SPIRES].
[52] A.D. Dolgov and A.D. Linde, Baryon asymmetry in inflationary universe, Phys. Lett.B 116 (1982) 329 [SPIRES].
[53] L.F. Abbott, E. Farhi and M.B. Wise, Particle production in the new inflationary cosmology, Phys. Lett.B 117 (1982) 29 [SPIRES].
[54] V.F. Mukhanov, H.A. Feldman and R.H. Brandenberger, Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions, Phys. Rept.215 (1992) 203 [SPIRES]. · doi:10.1016/0370-1573(92)90044-Z
[55] WMAP collaboration, E. Komatsu et al., Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl.180 (2009) 330 [arXiv:0803.0547] [SPIRES]. · doi:10.1088/0067-0049/180/2/330
[56] http://www.rssd.esa.int/index.php?project=Planck.
[57] M. Li and Y. Wang, Multi-stream inflation, JCAP07 (2009) 033 [arXiv:0903.2123] [SPIRES].
[58] S. Li, Y. Liu and Y.-S. Piao, Inflation in web, Phys. Rev.D 80 (2009) 123535 [arXiv:0906.3608] [SPIRES].
[59] Y. Wang, Multi-stream inflation: bifurcations and recombinations in the multiverse, arXiv:1001.0008 [SPIRES].
[60] M. Berg, E. Pajer and S. Sjors, Dante’s inferno, Phys. Rev.D 81 (2010) 103535 [arXiv:0912.1341] [SPIRES].
[61] T. Battefeld and S. Watson, String gas cosmology, Rev. Mod. Phys.78 (2006) 435 [hep-th/0510022] [SPIRES]. · Zbl 1205.83068 · doi:10.1103/RevModPhys.78.435
[62] G.N. Felder et al., Dynamics of symmetry breaking and tachyonic preheating, Phys. Rev. Lett.87 (2001) 011601 [hep-ph/0012142] [SPIRES]. · doi:10.1103/PhysRevLett.87.011601
[63] J.F. Dufaux, G.N. Felder, L. Kofman, M. Peloso and D. Podolsky, Preheating with trilinear interactions: tachyonic resonance, JCAP07 (2006) 006 [hep-ph/0602144] [SPIRES].
[64] D. Battefeld and S. Kawai, Preheating after N-flation, Phys. Rev.D 77 (2008) 123507 [arXiv:0803.0321] [SPIRES].
[65] D. Battefeld, Preheating after multi-field inflation, Nucl. Phys. Proc. Suppl.192-193 (2009) 126 [arXiv:0809.3455] [SPIRES]. · doi:10.1016/j.nuclphysbps.2009.07.050
[66] D. Battefeld, T. Battefeld and J.T. Giblin, On the suppression of parametric resonance and the viability of tachyonic preheating after multi-field inflation, Phys. Rev.D 79 (2009) 123510 [arXiv:0904.2778] [SPIRES].
[67] J . Braden, L. Kofman and N. Barnaby, Reheating the universe after multi-field inflation, arXiv:1005.2196 [SPIRES].
[68] A.D. Linde, Particle physics and inflationary cosmology, hep-th/0503203 [SPIRES]. · Zbl 1005.83055
[69] B.A. Bassett, Inflationary reheating classes via spectral methods, Phys. Rev.D 58 (1998) 021303 [hep-ph/9709443] [SPIRES].
[70] B.A. Bassett and F. Tamburini, Inflationary reheating in grand unified theories, Phys. Rev. Lett.81 (1998) 2630 [hep-ph/9804453] [SPIRES]. · doi:10.1103/PhysRevLett.81.2630
[71] J.H. Horne and G.W. Moore, Chaotic coupling constants, Nucl. Phys.B 432 (1994) 109 [hep-th/9403058] [SPIRES]. · Zbl 1020.81780 · doi:10.1016/0550-3213(94)90595-9
[72] J. Rudnick, A. Beldjenna and G. Gaspari, The shapes of high-dimensional random walks, J. Phys.A 20 (1987) 971. · Zbl 0625.60080
[73] J. Rudnick and G. Gaspari, Elements of the random walk, Cambridge University Press, Cambridge U.K. (2004). · Zbl 1086.60003 · doi:10.1017/CBO9780511610912
[74] R. Allahverdi, A.R. Frey and A. Mazumdar, Graceful exit from a stringy landscape via MSSM inflation, Phys. Rev.D 76 (2007) 026001 [hep-th/0701233] [SPIRES].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.