×

Identification of feedback loops embedded in cellular circuits by investigating non-causal impulse response components. (English) Zbl 1311.92081

Summary: Feedback circuits are crucial dynamic motifs which occur in many biomolecular regulatory networks. They play a pivotal role in the regulation and control of many important cellular processes such as gene transcription, signal transduction, and metabolism. In this study, we develop a novel computationally efficient method to identify feedback loops embedded in intracellular networks, which uses only time-series experimental data and requires no knowledge of the network structure. In the proposed approach, a non-parametric system identification technique, as well as a spectral factor analysis, is applied to derive a graphical criterion based on non-causal components of the system’s impulse response. The appearance of non-causal components in the impulse response sequences arising from stochastic output perturbations is shown to imply the presence of underlying feedback connections within a linear network. In order to extend the approach to nonlinear networks, we linearize the intracellular networks about an equilibrium point, and then choose the magnitude of the output perturbations sufficiently small so that the resulting time-series responses remain close to the chosen equilibrium point. In this way, the impulse response sequences of the linearized system can be used to determine the presence or absence of feedback loops in the corresponding nonlinear network. The proposed method utilizes the time profile data from intracellular perturbation experiments and only requires the perturbability of output nodes. Most importantly, the method does not require any a priori knowledge of the system structure. For these reasons, the proposed approach is very well suited to identifying feedback loops in large-scale biomolecular networks. The effectiveness of the proposed method is illustrated via two examples: a synthetic network model with a negative feedback loop and a nonlinear caspase function model of apoptosis with a positive feedback loop.

MSC:

92C42 Systems biology, networks
92C40 Biochemistry, molecular biology
93E12 Identification in stochastic control theory
93E10 Estimation and detection in stochastic control theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adams SR, Tsien RY (1993) Controlling cell chemistry with caged compounds. Annu Rev Physiol 55: 755–784. doi: 10.1146/annurev.ph.55.030193.003543 · doi:10.1146/annurev.ph.55.030193.003543
[2] Baccala LA, Sameshima K (1999) Direct coherence: a tool for exploring functional interactions among brain structures. Methods for neural ensemble recordings. CRC press LLC, Boca Raton
[3] Bernardinelli Y, Haeberli C, Chatton JY (2005) Flash photolysis using a light emitting diode: an efficient, compact, and affordable solution. Cell Calcium 37: 565–572. doi: 10.1016/j.ceca.2005.03.001 · doi:10.1016/j.ceca.2005.03.001
[4] Brandman O, Ferrell JE, Li R, Meyer T (2005) Interlinked fast and slow positive feedback loops drive reliable cell decisions. Science 310: 496–498. doi: 10.1126/science.1113834 · Zbl 1226.93062 · doi:10.1126/science.1113834
[5] Brown EB, Shear JB, Adams SR, Tsien RY, Webb WW (1999) Photolysis of caged calcium in femtoliter volumes using two-photon excitation. Biophys J 76: 489–499. doi: 10.1016/S0006-3495(99)77217-6 · doi:10.1016/S0006-3495(99)77217-6
[6] Bullinger E (2005) System analysis of a programmed cell death model. In: Proceedings of the IEEE conference on decision and control. Seville, Spain, pp 7994–7999
[7] Caines PE, Chan CW (1975) Feedback between stationary stochastic processes. IEEE Trans AC 20: 498–508 · Zbl 0312.60018 · doi:10.1109/TAC.1975.1101008
[8] Cho K-H, Shin S-Y, Lee H-W, Wolkenhauer O (2003) Investigations into the analysis and modeling of the TNF{\(\alpha\)} mediated NF-{\(\kappa\)}B signaling pathway. Genome Res 13(11): 2413–2422. doi: 10.1101/gr.1195703 · doi:10.1101/gr.1195703
[9] Corrie JET, Katayama Y, Reid GP, Anson M, Trentham DR (1992) The development and application of photosensitive caged compounds to aid time-resolved structure determination of macromolecules. Philos Trans R Soc London Ser A 340: 233–243 · doi:10.1098/rsta.1992.0063
[10] Dayal BS, MacGregor JF (1996) Identification of finite impulse response models: methods and robustness issues. Ind Eng Chem Res 35: 4078–4090. doi: 10.1021/ie960180e · doi:10.1021/ie960180e
[11] Dong CY, Cho K-H, Yoon TW (2008) Identification of intra-cellular feedback loops by intermittent step perturbation method. In: Proceedings of the 17th IFAC world congress (IFAC2008), Seoul, Korea, pp 289–294
[12] Doré S, Kearney RE, De Guise JA (1997) Experimental correlation-based identification of X-ray CT point spread function. Part 1: method and experimental results. Med Biol Eng Comput 35: 0118–0140
[13] Draper DR, Smith H (1981) Applied regression analysis, 2nd edn. Wiley, New York · Zbl 0548.62046
[14] Durbin J (1960) The fitting of time series models. Rev Int Stat Inst 23: 233–244. doi: 10.2307/1401322 · Zbl 0101.35604 · doi:10.2307/1401322
[15] Eisen H, Brachet P, da Silva PL, Jacob F (1967) Regulation of repressor inhibition in lambda. Proc Natl Acad Sci USA 66: 855–862. doi: 10.1073/pnas.66.3.855 · doi:10.1073/pnas.66.3.855
[16] Eissing T, Allgower F, Bullinger E (2005) Robustness properties of apoptosis models with respect to parameter variations and intrinsic noise. IEE Proc Sys Biol 152: 221–228. doi: 10.1049/ip-syb:20050046 · doi:10.1049/ip-syb:20050046
[17] Eissing T, Conzelmann H, Gilles ED, Allgower F, Bullinger E, Scheurich P (2004) Bistability analyses of a caspase activation model for receptor-induced apoptosis. J Biol Chem 279: 36892–36897. doi: 10.1074/jbc.M404893200 · doi:10.1074/jbc.M404893200
[18] Fang CZ, Xiao DY (1988) System identification. Tsinghua University Press, Beijing
[19] Gauss KF (1963) Theoria motus corporum celestium. english translation: theory of the motion of the heavenly bodies. Dover, New York
[20] Geladi P, Kowalski BR (1986) Partial least-squares regression: a tutorial. Anal Chim Acta 185: 1–17. doi: 10.1016/0003-2670(86)80028-9 · doi:10.1016/0003-2670(86)80028-9
[21] Giovannardi S, Lando L, Peres A (1998) Flash photolysis of caged compounds: casting light on physiological processes. News Physiol Sci 13: 251–255
[22] Glendinning P (1994) Stability, instability and chaos: an introduction to the theory of nonlinear differential equations. Cambridge University Press, Cambridge · Zbl 0808.34001
[23] Godfrey KR (1980) Correlation methods. Automatica 16: 527–534. doi: 10.1016/0005-1098(80)90076-X · Zbl 0441.93050 · doi:10.1016/0005-1098(80)90076-X
[24] Golub G, van Loan C (1996) Matrix computations. The Johns Hopkins University Press, London · Zbl 0865.65009
[25] Gouze J (1998) Positive and negative circuits in dynamical systems. J Biol Syst 6: 11–15. doi: 10.1142/S0218339098000054 · Zbl 1058.37537 · doi:10.1142/S0218339098000054
[26] Granger CWJ (1962) Economic processes involving feedback. Princeton University, New Jersey
[27] Guldberg CM, Waage P (1879) Über die chemische Affinität. J Prakt Chem 19: 69. doi: 10.1002/prac.18790190111 · doi:10.1002/prac.18790190111
[28] Haass C (1999) Apoptosis: dead end for neurodegeneration. Nature 399: 204–207. doi: 10.1038/20314 · doi:10.1038/20314
[29] Hoerl AE, Kennard RW (1970a) Ridge regression: biased estimation for nonorthogonal problems. Technometrics 42: 80–86. doi: 10.2307/1271436 · Zbl 0202.17205 · doi:10.1080/00401706.2000.10485983
[30] Hoerl AE, Kennard RW (1970b) Ridge regression: applications to nonorthogonal problems. Technometrics 12: 69–82. doi: 10.2307/1267352 · Zbl 0202.17206 · doi:10.1080/00401706.1970.10488635
[31] Hull TE, Dobell AR (1962) Random number generater. Soc Ind Appl Math Rev 4: 230–254 · Zbl 0111.14701
[32] Hunter IW, Kearney RE (1983) Two-sided linear filter identification. Med Biol Eng Comput 21: 203–209. doi: 10.1007/BF02441539 · doi:10.1007/BF02441539
[33] Kim D, Kwon Y-K, Cho K-H (2007a) Coupled positive and negative feedback circuits form an essential building block of cellular signaling pathways. Bioessays 29(1): 85–90. doi: 10.1002/bies.20511 · doi:10.1002/bies.20511
[34] Kim D, Rath O, Kolch W, Cho K-H (2007b) A hidden oncogenic positive feedback loop caused by crosstalk between Wnt and ERK pathways. Oncogene 26(31): 4571–4579. doi: 10.1038/sj.onc.1210230 · doi:10.1038/sj.onc.1210230
[35] Kim J-R, Yoon Y, Cho K-H (2008) Coupled feedback loops form dynamic motifs of cellular networks. Biophys J 94(2): 359–365. doi: 10.1529/biophysj.107.105106 · doi:10.1529/biophysj.107.105106
[36] Klipp E, Herwig R, Kowald A, Wierling C, Lehrach H (2005) Systems biology in practice: concepts, implementation and application. Wiley-VCh Verlag GmbH & Co. KGaA, Berlin
[37] Kwon Y-K, Cho K-H (2008a) Quantitative analysis of robustness and fragility in biological networks based on feedback dynamics. Bioinformatics 24(7): 987–994. doi: 10.1093/bioinformatics/btn060 · Zbl 05511430 · doi:10.1093/bioinformatics/btn060
[38] Kwon Y-K, Cho K-H (2008b) Coherent coupling of feedback loops: A design principle of cell signaling networks. Bioinformatics 24(17): 1926–1932. doi: 10.1093/bioinformatics/btn337 · Zbl 05511777 · doi:10.1093/bioinformatics/btn337
[39] Laub MT, Loomis WF (1998) A molecular network that produces spontaneous oscillations in excitable cells of dictyostelium. Mol Biol Cell 9: 3521–3532 · doi:10.1091/mbc.9.12.3521
[40] Levinson N (1947) The Wiener RMS error criterion in filter design and prediction. J Math Phys 25: 261–278
[41] Ljung L (1987) System identification: theory for the user. Prentice Hall, New Jersey · Zbl 0615.93004
[42] Ludwig R, Ehrhardt A (1995) Turn-key-ready wavelength-, repetition rate-and pulse width-tunable femtosecond hybrid modelocked semiconductor laser. Electron Lett 31: 1165–1167. doi: 10.1049/el:19950796 · doi:10.1049/el:19950796
[43] Maeda M, Lu S, Shaulsky G, Miyazaki Y, Kuwayama H, Tanaka Y, Kuspa A, Loomis WF (2004) Periodic signaling controlled by an oscillatory circuit that includes protein kinase ERK2 and PKA. Science 304: 875–878. doi: 10.1126/science.1094647 · doi:10.1126/science.1094647
[44] McClung FJ, Hellwarth RW (2004) Giant optical pulsations from ruby. J Appl Phys 33: 828–829. doi: 10.1063/1.1777174 · doi:10.1063/1.1777174
[45] Mialocq JC, Amouyal E, Bernas A, Grand D (1982) Picosecond laser photolysis of aqueous indole and tryptophan. J Phys Chem 86: 3173–3177. doi: 10.1021/j100213a022 · doi:10.1021/j100213a022
[46] Miao B, Zane R, Maksimovic D (2005) System identification of power converters with digital control through cross-correlation methods. IEEE Trans. Power Electron 20(5): 1093–1099. doi: 10.1109/TPEL.2005.854035 · doi:10.1109/TPEL.2005.854035
[47] Miyasaka H, Nagata T, Kiri M, Mataga N (1992) Femtosecond-picosecond laser photolysis studies on reduction process of excited benzophenone with N-methyldiphenylamine in acetonitrile solution. J Phys Chem 96: 8060–8065. doi: 10.1021/j100199a042 · doi:10.1021/j100199a042
[48] Nerbonne JM (1986) Design and application of photolabile intracellular probes. Soc Gen Physiol Ser 40: 417–445
[49] Okamura T, Sancar A, Heelis PF, Begley TP, Hirata Y, Mataga N (1991) Picosecond laser photolysis studies on the photorepair of pyrimidine dimers by DNA photolyase. 1. Laser photolysis of photolyase-2-deoxyuridine dinucleotide photodimer complex. J Am Chem Soc 113: 3143–3145. doi: 10.1021/ja00008a050 · doi:10.1021/ja00008a050
[50] Oppenheim AV, Willsky AS, Nawab SH (1997) Signals & systems. Prentice-Hall, Englewood Cliffs
[51] Porta A, Furlan R, Rimoldi O, Pagani M, Malliani A, van de Borne P (2002) Quantifying the strength of the linear causal coupling in closed loop interacting cardiovascular variability signals. Biol Cybern 86: 241–251. doi: 10.1007/s00422-001-0292-z · Zbl 1104.92330 · doi:10.1007/s00422-001-0292-z
[52] Rabiner L, Crochiere R, Allen J (1978) FIR system modeling and identification in the presence of noise and with band-limited inputs, acoustics, speech, and signal processing. IEEE Trans Signal Process 26: 319–333. doi: 10.1109/TASSP.1978.1163113 · Zbl 0415.93055 · doi:10.1109/TASSP.1978.1163113
[53] Rao CR (1973) Linear statistical inference and its applications. Wiley, New York · Zbl 0256.62002
[54] Rapp G, Güth K (1988) A low cost high intensity flash device for photolysis experiments. Pflugers Arch Eur J Physiol 411: 200–203. doi: 10.1007/BF00582315 · doi:10.1007/BF00582315
[55] Schnider SM, Kwong RH, Lenz FA, Kwan HC (1989) Detection of feedback in the central nervous system using system identification techniques. Biol Cybern 60: 203–212. doi: 10.1007/BF00207288 · Zbl 0667.92004 · doi:10.1007/BF00207288
[56] Sension RJ, Repinec ST, Szarka AZ, Hochstrasser RM (1993) Femtosecond laser studies of the cis-stilbene photoisomerization reactions. J Chem Phys 98: 6291–6315. doi: 10.1063/1.464824 · doi:10.1063/1.464824
[57] Shin S-Y, Rath O, Choo S-M, Fee F, Kolch W, Kolch W, Cho K-H (2009) Positive and negative feedback regulations coordinate the dynamic behavior of the Ras/Raf/MEK/ERK signal transduction pathway. J Cell Sci 122(3): 425–435. doi: 10.1242/jcs.036319 · doi:10.1242/jcs.036319
[58] Strogatz SH (2000a) From kuramoto to crawford: exploring the onset of synchronization in populations of coupled oscillations. Physica D 143: 1–20. doi: 10.1016/S0167-2789(00)00094-4 · Zbl 0983.34022 · doi:10.1016/S0167-2789(00)00094-4
[59] Strogatz SH (2000b) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry and engineering. Perseus Publishing, Reading
[60] Szallasi Z, Stelling J, Periwal V (2005) System modeling in cell biology from concepts to nuts and bolts. The MIT Press, Cambridge · Zbl 1274.92012
[61] Thomas R (1981) On the relation between the logical structure of systems and their ability to generate multiple steady states or sustained oscillation. Springer Ser Synergetics 9: 180–193 · Zbl 0489.92025 · doi:10.1007/978-3-642-81703-8_24
[62] Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267: 456–1462. doi: 10.1126/science.7878464 · doi:10.1126/science.7878464
[63] Thomas R, Kaufman M (2001) Multistationarity, the basis of cell differentiation and memory. I. structural conditions of multistationarity and other nontrivial behavior. Chaos 11: 170–179. doi: 10.1063/1.1350439 · Zbl 0997.92011 · doi:10.1063/1.1350439
[64] Tufillaro NB, Abbot T, Reilly J (1992) An experimental approach to nonlinear dynamics and chaos. Perseus Publishing, Chambridge
[65] Vance W, Arkin A, Ross J (2002) Determination of causal connectivities of biomolecular species in reaction networks. Proc Natl Acad Sci USA 99: 5816–5821. doi: 10.1073/pnas.022049699 · doi:10.1073/pnas.022049699
[66] Westwick DT, Kearney RE (1997) Identification of physiological systems: a robust method for non-parametric impulse response estimation. Med Biol Eng Comput 35: 83–90. doi: 10.1007/BF02534135 · doi:10.1007/BF02534135
[67] Wolkenhauer O, Kitano H, Cho K-H (2003) Systems biology: Looking at opportunities and challenges in applying systems theory to molecular and cell biology. IEEE Contr Syst Mag 23(4): 38–48. doi: 10.1109/MCS.2003.1213602 · doi:10.1109/MCS.2003.1213602
[68] Wolpert L, Lewis JH (1975) Towards a theory of development. Fed Proc 34: 14–20
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.