×

Are collapse models testable via flavor oscillations? (English) Zbl 1272.81219

Summary: Collapse models predict the spontaneous collapse of the wave function, in order to avoid the emergence of macroscopic superpositions. In their mass-dependent formulation, they claim that the collapse of any system’s wave function depends on its mass. Neutral \(K, D, B\) mesons are oscillating systems that are given by Nature as superposition of two distinct mass eigenstates. Thus they are unique laboratory for testing collapse models that are sensitive to the mass. In this paper we derive – for the single mesons and bipartite entangled mesons – the effect of the mass-proportional CSL (Continuous Spontaneous Localization) collapse model on the dynamics on neutral mesons. We compare the theoretical prediction with experimental data from different accelerator facilities.

MSC:

81V25 Other elementary particle theory in quantum theory
81V35 Nuclear physics
81P15 Quantum measurement theory, state operations, state preparations
81P05 General and philosophical questions in quantum theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Gell-Mann, M., Pais, A.: Behaviour of neutral particles under charge conjugation. Phys. Rev. 97, 1387 (1955) · doi:10.1103/PhysRev.97.1387
[2] Pais, A., Piccioni, O.: Note on the decay and absorption of the θ0. Phys. Rev. 100, 1487 (1955) · doi:10.1103/PhysRev.100.1487
[3] Hiesmayr, B.C.: Nonlocality and entanglement in a strange system. Eur. Phys. J. C 50, 73 (2007) · doi:10.1140/epjc/s10052-006-0199-x
[4] Bertlmann, R. A.; Hiesmayr, B. C., No article title, Kaonic Qubits, Quantum Inform. Proces., 5, 421 (2006) · Zbl 1105.68038 · doi:10.1007/s11128-006-0026-1
[5] Bigi, I. I., Flavour dynamics & CP violation in the standard model: a crucial past—and an essential future, Aronsborg, Sweden
[6] Genovese, M.: On the distances between entangled pseudoscalar meson states. Eur. Phys. J. C 55, 683 (2008) · doi:10.1140/epjc/s10052-008-0621-7
[7] Courbage, M.M., Durt, T.T., Saberi Fathi, S.M.: A new formalism for the estimation of the CP-violation parameters. arXiv:0907.2514 · Zbl 1221.81174
[8] Benatti, F., Floreanini, R.: Dissipative neutrino oscillations in randomly fluctuating matter. Phys. Rev. D 71, 013003 (2005) · doi:10.1103/PhysRevD.71.013003
[9] Benatti, F., Floreanini, R., Romano, R.: Neutral kaons in random media. Phys. Rev. D 68, 094007 (2003) · doi:10.1103/PhysRevD.68.094007
[10] Beuthe, M.: Oscillations of neutrinos and mesons in quantum field theory. Phys. Rep. 375, 105 (2003) · doi:10.1016/S0370-1573(02)00538-0
[11] Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1986) · Zbl 1239.81001
[12] Adler, S.L., Bassi, A.: Is quantum theory exact? Science 325, 275 (2009) · doi:10.1126/science.1176858
[13] Weinberg, S.: Collapse of the state vector. Phys. Rev. A 85, 062116 (2012) · doi:10.1103/PhysRevA.85.062116
[14] Leggett, A.J.: How far do EPR-Bell experiments constrain physical collapse theories? J. Phys. A, Math. Theor. 40, 3141 (2007) · Zbl 1117.81316 · doi:10.1088/1751-8113/40/12/S15
[15] Arndt, M., Nairz, O., Vos-Andreae, J., Keller, C., van der Zouw, G., Zeilinger, A.: Wave-particle duality of C60 molecules. Nature 401, 680 (1999) · doi:10.1038/44348
[16] Hackermüller, L., Hornberger, K., Brezger, B., Zeilinger, A., Arndt, M.: Decoherence of matter waves by thermal emission of radiation. Nature 427, 711 (2004) · doi:10.1038/nature02276
[17] Gerlich, S., Hackermüller, L., Hornberger, K., Stibor, A., Ulbricht, H., Gring, M., Goldfarb, F., Savas, T., Müri, M., Mayor, M., Arndt, M.: A Kapitza-Dirac-Talbot-Lau interferometer for highly polarizable molecules. Nat. Phys. 3, 711 (2007) · doi:10.1038/nphys701
[18] Gerlich, S., Eibenberger, S., Tomandl, M., Nimmrichter, S., Hornberger, K., Fagan, P.J., Tüxen, J., Mayor, M., Arndt, M.: Quantum interference of large organic molecules. Nat. Commun. 2, 263 (2011) · doi:10.1038/ncomms1263
[19] Marshall, W., Simon, C., Penrose, R., Bouwmeester, D.: Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91, 130401 (2003) · doi:10.1103/PhysRevLett.91.130401
[20] Romero-Isart, O.: Quantum superposition of massive objects and collapse models. Phys. Rev. A 84, 052121 (2011) · doi:10.1103/PhysRevA.84.052121
[21] Ghirardi, G.C., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34, 470 (1986) · Zbl 1222.82047 · doi:10.1103/PhysRevD.34.470
[22] Ghirardi, G.C., Grassi, R., Benatti, F.: Describing the macroscopic world: closing the circle within the dynamical reduction program. Found. Phys. 25, 5 (1995) · Zbl 1222.81058 · doi:10.1007/BF02054655
[23] Fu, Q.: Spontaneous radiation of free electrons in a nonrelativistic collapse model. Phys. Rev. A 56, 1806 (1997) · doi:10.1103/PhysRevA.56.1806
[24] Ghirardi, G.C., Pearle, P., Rimini, A.: Markov process in Hilbert space and continuous spontaneous factorization of systems of identical particles. Phys. Rev. A 42, 78 (1990) · doi:10.1103/PhysRevA.42.78
[25] Adler, S.L.: A density tensor hierarchy for open system dynamics: retrieving the noise. J. Phys. A 40, 2935 (2007) · Zbl 1114.81013 · doi:10.1088/1751-8113/40/12/S03
[26] Bassi, A., Ghirardi, G.C.: Dynamical reduction models. Phys. Rep. 379, 257 (2003) · Zbl 1034.81004 · doi:10.1016/S0370-1573(03)00103-0
[27] Adler, S.L., Bassi, A.: Collapse models with non-white noises. J. Phys. A, Math. Theor. 40, 15083 (2007) · Zbl 1134.81308 · doi:10.1088/1751-8113/40/50/012
[28] Adler, S.L.: Quantum Theory as an Emergent Phenomenon. Cambridge University Press, Cambridge (2004) · Zbl 1095.81002 · doi:10.1017/CBO9780511535277
[29] Pearle, P.: Reduction of the state vector by a nonlinear Schrödinger equation. Phys. Rev. D 13, 857 (1976) · doi:10.1103/PhysRevD.13.857
[30] Pearle, P.: Combining stochastic dynamical state-vector reduction with spontaneous localization. Phys. Rev. A 39, 2277 (1989) · doi:10.1103/PhysRevA.39.2277
[31] Pearle, P.; Breuer, H.-P. (ed.); Petruccione, F. (ed.), Open systems and measurement, No. 526 (1999), Berlin
[32] Diósi, L.: Quantum stochastic processes as models for state vector reduction. J. Phys. A, Math. Gen. 21, 2885 (1988) · Zbl 0653.60107 · doi:10.1088/0305-4470/21/13/013
[33] Diósi, L.: Continuous quantum measurement and its formalism. Phys. Lett. A 129, 419 (1988) · doi:10.1016/0375-9601(88)90309-X
[34] Christian, J.: Testing gravity-driven collapse of the wave function via cosmogenic neutrinos. Phys. Rev. Lett. 95, 160403 (2005) · doi:10.1103/PhysRevLett.95.160403
[35] Penrose, R.: On gravity’s role in quantum state reduction. Gen. Relativ. Gravit. 28, 581 (1996) · Zbl 0855.53046 · doi:10.1007/BF02105068
[36] Penrose, R.; Fokas, A. (ed.); etal., Wave function collapse as a real gravitational effect (2000), London
[37] Diósi, L.: Models for universal reduction of macroscopic quantum fluctuations. Phys. Rev. A 40, 1165 (1989) · doi:10.1103/PhysRevA.40.1165
[38] Ghirardi, G.C., Grassi, R., Rimini, A.: Continuous-spontaneous-reduction model involving gravity. Phys. Rev. A 42, 1057 (1990) · doi:10.1103/PhysRevA.42.1057
[39] Sakurai, J.J., Tuan, S.F.: Modern Quantum Mechanics. Addison-Wesley, Reading (1994)
[40] Bertlmann, R.A., Durstberger, K., Hiesmayr, B.C.: Decoherence of entangled kaons and its connection to entanglement measures. Phys. Rev. A 68, 012111 (2003) · doi:10.1103/PhysRevA.68.012111
[41] Ambrosino, F., et al. (KLOE Collaboration): First observation of quantum interference in the process Φ⟶KSKL⟶π+π−π+π−: a test of quantum mechanics and CPT symmetry. Phys. Lett. B 642, 315 (2006) · doi:10.1016/j.physletb.2006.09.046
[42] Di Domenico, A., (KLOE Collaboration): CPT symmetry and quantum mechanics tests in the neutral kaon system at KLOE. Found. Phys. 40, 852 (2010) · Zbl 1197.81191 · doi:10.1007/s10701-009-9366-x
[43] Di Domenico, A.: Search for CPT violation and decoherence effects in the neutral kaon system. J. Phys. Conf. Ser. 171, 012008 (2009) · doi:10.1088/1742-6596/171/1/012008
[44] Amelino-Camelia, G., et al.: Physics with the KLOE-2 experiment at the upgraded DAPHNE. Eur. Phys. J. C 68(3-4), 619 (2010) · doi:10.1140/epjc/s10052-010-1351-1
[45] Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976) · Zbl 0343.47031 · doi:10.1007/BF01608499
[46] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976) · Zbl 1446.47009 · doi:10.1063/1.522979
[47] Bertlmann, R.A., Grimus, W., Hiesmayr, B.C.: An open-quantum-system formulation of particle decay. Phys. Rev. A 73, 054101 (2006) · Zbl 0972.81519 · doi:10.1103/PhysRevA.73.054101
[48] Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002) · Zbl 1053.81001
[49] Richter, G.: University, stability of nonlocal quantum correlations in neutral B-meson systems. PhD thesis at the Vienna Technical
[50] Bertlmann, R.A., Grimus, W., Hiesmayr, B.C.: Quantum mechanics, Furry’s hypothesis and a measure of decoherence. Phys. Rev. D 60, 114032 (1999) · doi:10.1103/PhysRevD.60.114032
[51] Apostolakis, A., et al. (CPLEAR Collaboration): An EPR experiment testing the non-separability of the K0K0 wave function. Phys. Lett. B 422, 339 (1998) · doi:10.1016/S0370-2693(97)01545-1
[52] Nakamura, K.; Particle Data Group; etal., No article title, Rev. Particle Phys., J. Phys. G, 37 (2010) · doi:10.1088/0954-3899/37/7A/075021
[53] Go, A., Bay, A., et al. (for the Belle Collaboration): Measurement of EPR-type flavour entanglement in Upsilon(4S)\( \longrightarrow B^0 \bar{B}^0\) decays. Phys. Rev. Lett. 99, 131802 (2007) · doi:10.1103/PhysRevLett.99.131802
[54] Bertlmann, R.A., Grimus, W.: A model for decoherence of entangled beauty. Phys. Rev. D 64, 056004 (2001) · doi:10.1103/PhysRevD.64.056004
[55] Yabsley, B. D., Quantum entanglement at the psi(3770) and Upsilon (4S), Taipei
[56] Mavromatos, N.E., Sarkar, S.: Liouville decoherence in a model of flavour oscillations in the presence of dark energy. Phys. Rev. D 72, 065016 (2005) · doi:10.1103/PhysRevD.72.065016
[57] Bahrami, M., Donadi, S., Bassi, A., Ferialdi, L., Curceanu, C., Di Domenico, A., Hiesmayr, B.C.: Testing collapse models with neutrinos, mesons and chiral molecules. Eur. Phys. Lett. in preparation
[58] Donadi, S., Bassi, A., Ferialdi, L., Curceanu, C.: The effect of spontaneous collapses on neutrino oscillations (2012). arXiv:1207.5997 · Zbl 1278.81152
[59] Capolupo, A., Ji, C.-R., Mishchenko, Y., Vitiello, G.: Phenomenology of flavor oscillations with non-perturbative effects from quantum field theory. Phys. Lett. B 594, 135 (2004) · doi:10.1016/j.physletb.2004.05.016
[60] Hiesmayr, B.C., Di Domenico, A., Curceanu, C., Gabriel, A., Huber, M., Larsson, J.-A., Moskal, P.: Revealing Bell’s nonlocality for unstable systems in high energy physics. Eur. Phys. J. C 72, 1856 (2012) · doi:10.1140/epjc/s10052-012-1856-x
[61] Hiesmayr, B.C.: A generalized Bell inequality and decoherence for the neutral kaon system. Found. Phys. Lett. 14, 312 (2001) · Zbl 0972.81519 · doi:10.1023/A:1013457210230
[62] Bertlmann, R.A., Hiesmayr, B.C.: Bell inequalities for entangled kaons and their unitary time evolution. Phys. Rev. A 63, 062112 (2001) · doi:10.1103/PhysRevA.63.062112
[63] Genovese, M.: About entanglement properties of kaons and tests of hidden variables models. Phys. Rev. A 69, 022103 (2004) · doi:10.1103/PhysRevA.69.022103
[64] Bertlmann, R.A., Grimus, W., Hiesmayr, B.C.: Bell inequality and CP violation in the neutral kaon system. Phys. Lett. A 289, 21 (2001) · Zbl 0972.81519 · doi:10.1016/S0375-9601(01)00577-1
[65] Bertlmann, R.A., Bramon, A., Garbarino, G., Hiesmayr, B.C.: Violation of a Bell inequality in particle physics experimentally verified? Phys. Lett. A 332, 355 (2004) · Zbl 1123.81306 · doi:10.1016/j.physleta.2004.10.006
[66] Bramon, A., Garbarino, G., Hiesmayr, B.C.: Active and passive quantum eraser for neutral kaons. Phys. Rev. A 69, 062111 (2004) · Zbl 1208.81009 · doi:10.1103/PhysRevA.69.062111
[67] Bramon, A., Garbarino, G., Hiesmayr, B.C.: Quantum marking and quantum erasure for neutral kaons. Phys. Rev. Lett. 92, 020405 (2004) · Zbl 1208.81009 · doi:10.1103/PhysRevLett.92.020405
[68] Bramon, A., Garbarino, G., Hiesmayr, B.C.: Quantitative complementarity in two-path interferometry. Phys. Rev. A 69, 022112 (2004) · Zbl 1123.81306 · doi:10.1103/PhysRevA.69.022112
[69] Caban, P., Rembielinski, J., Smolinski, K.A., Walczak, Z., Wlodarczyk, M.: An open quantum system approach to EPR correlations in K0-K0 systems. Phys. Lett. A 357, 6 (2006) · doi:10.1016/j.physleta.2006.04.102
[70] Di Domenico, A., Gabriel, A., Hiesmayr, B.C., Hipp, F., Huber, M., Krizek, G., Mühlbacher, K., Radic, S., Spengler, C., Theussl, L.: Heisenberg’s uncertainty relation and Bell inequalities in high energy physics. Found. Phys. 42(6), 778 (2012) · Zbl 1259.81014 · doi:10.1007/s10701-011-9575-y
[71] Hiesmayr, B.C., Huber, M.: Bohr’s complementarity relation and the violation of the CP symmetry in high energy physics. Phys. Lett. A 372, 3608 (2008) · Zbl 1220.81177 · doi:10.1016/j.physleta.2008.02.055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.