×

zbMATH — the first resource for mathematics

Generalized thick strip modelling for vortex-induced vibration of long flexible cylinders. (English) Zbl 1349.74168
Summary: We propose a generalized strip modelling method that is computationally efficient for the VIV prediction of long flexible cylinders in three-dimensional incompressible flow. In order to overcome the shortcomings of conventional strip-theory-based 2D models, the fluid domain is divided into “thick” strips, which are sufficiently thick to locally resolve the small scale turbulence effects and three dimensionality of the flow around the cylinder. An attractive feature of the model is that we independently construct a three-dimensional scale resolving model for individual strips, which have local spanwise scale along the cylinder’s axial direction and are only coupled through the structural model of the cylinder. Therefore, this approach is able to cover the full spectrum for fully resolved 3D modelling to 2D strip theory. The connection between these strips is achieved through the calculation of a tensioned beam equation, which is used to represent the dynamics of the flexible body. In the limit, however, a single “thick” strip would fill the full 3D domain. A parallel Fourier spectral/\(hp\) element method is employed to solve the 3D flow dynamics in the strip-domain, and then the VIV response prediction is achieved through the strip-structure interactions. Numerical tests on both laminar and turbulent flows as well as the comparison against the fully resolved DNS are presented to demonstrate the applicability of this approach.

MSC:
74H45 Vibrations in dynamical problems in solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76D05 Navier-Stokes equations for incompressible viscous fluids
Software:
Nektar++
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Nektar++: Spectral/hp element framework, 2014. URL http://www.nektar.info.
[2] Baek, H.; Karniadakis, G. E., A convergence study of a new partitioned fluid-structure interaction algorithm based on fictitious mass and damping, J. Comput. Phys., 231, 2, 629-652, (2012) · Zbl 1426.76496
[3] Barkley, D.; Henderson, R. D., Three-dimensional Floquet stability analysis of the wake of a circular cylinder, J. Fluid Mech., 322, 215-241, (1996) · Zbl 0882.76028
[4] Barkley, D.; Tuckerman, L. S.; Golubitsky, M., Bifurcation theory for three-dimensional flow in the wake of a circular cylinder, Phys. Rev. A, 61, 5, 5247, (2000)
[5] Bolis, A., Fourier spectral/hp element method: investigation of time-stepping and parallelisation strategies, (2013), Imperial College London, PhD thesis
[6] Bourguet, R.; Karniadakis, G. E.; Triantafyllou, M. S., Vortex-induced vibrations of a long flexible cylinder in shear flow, J. Fluid Mech., 677, 342-382, (2011) · Zbl 1241.76137
[7] Bourguet, Ré; Karniadakis, G. E.; Triantafyllou, M. S., Distributed lock-in drives broadband vortex-induced vibrations of a long flexible cylinder in shear flow, J. Fluid Mech., 717, 361-375, (2013) · Zbl 1284.74030
[8] Cantwell, C. D.; Moxey, D.; Comerford, A.; Bolis, A.; Rocco, G.; Mengaldo, G.; De Grazia, D.; Yakovlev, S.; Lombard, J-E.; Ekelschot, D., Nektar++: an open-source spectral/hp element framework, Comput. Phys. Commun., 192, 205-219, (2015) · Zbl 1380.65465
[9] Chaplin, J. R., Laboratory measurements of the vortex-induced and wake-induced vibrations of one flexible riser in the wake of another, (2010), Technical report
[10] Chaplin, J. R.; Bearman, P. W.; Cheng, Y.; Fontaine, E.; Graham, J. M.R.; Herfjord, K.; Huera Huarte, F. J.; Isherwood, M.; Lambrakos, K.; Larsen, C. M., Blind predictions of laboratory measurements of vortex-induced vibrations of a tension riser, J. Fluids Struct., 21, 1, 25-40, (2005)
[11] Constantinides, Y.; Oakley, O. H., Numerical simulations of cylinder VIV focusing on high harmonics, (ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering, (2009), American Society of Mechanical Engineers), 807-813
[12] Dong, S.; Karniadakis, G. E.; Chryssostomidis, C., A robust and accurate outflow boundary condition for incompressible flow simulations on severely-truncated unbounded domains, J. Comput. Phys., 261, 83-105, (2014) · Zbl 1349.76569
[13] Evangelinos, C.; Karniadakis, G. E., Dynamics and flow structures in the turbulent wake of rigid and flexible cylinders subject to vortex-induced vibrations, J. Fluid Mech., 400, 91-124, (1999) · Zbl 0983.76029
[14] Evangelinos, C.; Lucor, D.; Karniadakis, G. E., DNS-derived force distribution on flexible cylinders subject to vortex-induced vibration, J. Fluids Struct., 14, 3, 429-440, (2000)
[15] Facchinetti, M. L.; De Langre, E.; Biolley, F., Coupling of structure and wake oscillators in vortex-induced vibrations, J. Fluids Struct., 19, 2, 123-140, (2004)
[16] Fessler, Jeffrey; Sutton Bradley, P., Nonuniform fast Fourier transforms using MIN-MAX interpolation, IEEE Trans. Signal Process., 51, 2, 560-574, (2003) · Zbl 1369.94048
[17] Förster, C.; Wall, W. A.; Ramm, E., Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows, Comput. Methods Appl. Mech. Eng., 196, 7, 1278-1293, (2007) · Zbl 1173.74418
[18] Gabbai, R. D.; Benaroya, H., An overview of modeling and experiments of vortex-induced vibration of circular cylinders, J. Sound Vib., 282, 3, 575-616, (2005)
[19] Greengard, Leslie; Lee, June-Yub, Accelerating the nonuniform fast Fourier transform, SIAM Rev., 46, 3, 443-454, (2004) · Zbl 1064.65156
[20] Guermond, J. L.; Shen, J., Velocity-correction projection methods for incompressible flows, SIAM J. Numer. Anal., 41, 1, 112-134, (2003) · Zbl 1130.76395
[21] Holmes, S.; Oakley, O. H.; Constantinides, Y., Simulation of riser VIV using fully three dimensional CFD simulations, (25th International Conference on Offshore Mechanics and Arctic Engineering, (2006), American Society of Mechanical Engineers), 563-570
[22] Huang, K.; Chen, H. C.; Chen, C. R., Numerical scheme for riser motion calculation during 3-D VIV simulation, J. Fluids Struct., 27, 7, 947-961, (2011)
[23] Karamanos, G. S.; Karniadakis, G. E., A spectral vanishing viscosity method for large-eddy simulations, J. Comput. Phys., 163, 1, 22-50, (2000) · Zbl 0984.76036
[24] Karniadakis, G.; Sherwin, S., Spectral/hp element methods for computational fluid dynamics, (2013), Oxford University Press · Zbl 1256.76003
[25] Karniadakis, G. E.; Israeli, M.; Orszag, S. A., High-order splitting methods for the incompressible Navier-Stokes equations, J. Comput. Phys., 97, 2, 414-443, (1991) · Zbl 0738.76050
[26] Kirby, R. M.; Sherwin, S. J., Stabilisation of spectral/hp element methods through spectral vanishing viscosity: application to fluid mechanics modelling, Comput. Methods Appl. Mech. Eng., 195, 23, 3128-3144, (2006) · Zbl 1115.76060
[27] Kravchenko, A. G.; Moin, P., Numerical studies of flow over a circular cylinder at \(\operatorname{ReD} = 3900\), Phys. Fluids (1994-present), 12, 2, 403-417, (2000) · Zbl 1149.76441
[28] Li, L.; Sherwin, S. J.; Bearman, P. W., A moving frame of reference algorithm for fluid/structure interaction of rotating and translating bodies, Int. J. Numer. Methods Fluids, 38, 2, 187-206, (2002) · Zbl 1009.76055
[29] Lucor, D.; Imas, L.; Karniadakis, G. Em, Vortex dislocations and force distribution of long flexible cylinders subjected to sheared flows, J. Fluids Struct., 15, 3, 641-650, (2001)
[30] Meneghini, J. R.; Saltara, F.; de Andrade Fregonesi, R.; Yamamoto, C. T.; Casaprima, E.; Ferrari, J. A., Numerical simulations of VIV on long flexible cylinders immersed in complex flow fields, Eur. J. Mech. B, Fluids, 23, 1, 51-63, (2004) · Zbl 1071.76043
[31] Newman, D.; Karniadakis, G. E., Simulations of flow over a flexible cable: a comparison of forced and flow-induced vibration, J. Fluids Struct., 10, 5, 439-453, (1996)
[32] Newman, D. J.; Karniadakis, G. E., A direct numerical simulation study of flow past a freely vibrating cable, J. Fluid Mech., 344, 95-136, (1997) · Zbl 0901.76062
[33] Parnaudeau, Philippe; Carlier, Johan; Heitz, Dominique; Lamballais, Eric, Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900, Phys. Fluids (1994-present), 20, 8, 085101, (2008) · Zbl 1182.76591
[34] Sun, L.; Zong, Z.; Dong, J.; Dong, G. H.; Liu, C. F., Stripwise discrete vortex method for VIV analysis of flexible risers, J. Fluids Struct., 35, 21-49, (2012)
[35] Tadmor, E., Convergence of spectral methods for nonlinear conservation laws, SIAM J. Numer. Anal., 26, 1, 30-44, (1989) · Zbl 0667.65079
[36] Tognarelli, M. A.; Slocum, S. T.; Frank, W. R.; Campbell, R. B., Laboratory measurements of the vortex-induced and wake-induced vibrations of one flexible riser in the wake of another, (Proceedings of the Offshore Technology Conference, OTC 16338, Houston, (2004))
[37] Willden, R. H.J.; Graham, J. M.R., Numerical prediction of VIV on long flexible circular cylinders, J. Fluids Struct., 15, 3, 659-669, (2001)
[38] Willden, R. H.J.; Graham, J. M.R., Multi-modal vortex-induced vibrations of a vertical riser pipe subject to a uniform current profile, Eur. J. Mech. B, Fluids, 23, 1, 209-218, (2004) · Zbl 1045.76519
[39] Willden, R. H.J.; Graham, J. M.R., Multi-modal vortex-induced vibrations of a vertical riser pipe subject to a uniform current profile, Eur. J. Mech. B, Fluids, 23, 1, 209-218, (2004) · Zbl 1045.76519
[40] Williamson, C. H.K., Three-dimensional wake transition, J. Fluid Mech., 328, 345-407, (1996) · Zbl 0899.76129
[41] Williamson, C. H.K.; Govardhan, R., A brief review of recent results in vortex-induced vibrations, J. Wind Eng. Ind. Aerodyn., 96, 6, 713-735, (2008)
[42] Wu, X. D.; Ge, F.; Hong, Y., A review of recent studies on vortex-induced vibrations of long slender cylinders, J. Fluids Struct., 28, 292-308, (2012)
[43] Yamamoto, C. T.; Meneghini, J. R.; Saltara, F.; Fregonesi, R. A.; Ferrari, J. A., Numerical simulations of vortex-induced vibration on flexible cylinders, J. Fluids Struct., 19, 4, 467-489, (2004)
[44] Yu, Y.; Baek, H.; Karniadakis, G. E., Generalized fictitious methods for fluid-structure interactions: analysis and simulations, J. Comput. Phys., 245, 317-346, (2013) · Zbl 1349.76577
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.