×

zbMATH — the first resource for mathematics

Quiver gauge theories: beyond reflexivity. (English) Zbl 1437.81062
Summary: Reflexive polygons have been extensively studied in a variety of contexts in mathematics and physics. We generalize this programme by looking at the 45 different lattice polygons with two interior points up to \(\mathrm{SL} (2, \mathbb{Z})\) equivalence. Each corresponds to some affine toric 3-fold as a cone over a Sasaki-Einstein 5-fold. We study the quiver gauge theories of D3-branes probing these cones, which coincide with the mesonic moduli space. The minimum of the volume function of the Sasaki-Einstein base manifold plays an important role in computing the R-charges. We analyze these minimized volumes with respect to the topological quantities of the compact surfaces constructed from the polygons. Unlike reflexive polytopes, one can have two fans from the two interior points, and hence give rise to two smooth varieties after complete resolutions, leading to an interesting pair of closely related geometries and gauge theories.
MSC:
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T25 Quantum field theory on lattices
53Z05 Applications of differential geometry to physics
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Feng, B.; Hanany, A.; He, Y-H, D-brane gauge theories from toric singularities and toric duality, Nucl. Phys. B, 595, 165 (2001) · Zbl 0972.81138
[2] Feng, B.; He, Y-H; Lam, F., On correspondences between toric singularities and (p, q) webs, Nucl. Phys. B, 701, 334 (2004) · Zbl 1124.81305
[3] Gulotta, DR, Properly ordered dimers, R-charges and an efficient inverse algorithm, JHEP, 10, 014 (2008) · Zbl 1245.81091
[4] Feng, B.; Hanany, A.; He, Y-H; Uranga, AM, Toric duality as Seiberg duality and brane diamonds, JHEP, 12, 035 (2001)
[5] Maldacena, JM, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys., 38, 1113 (1999) · Zbl 0969.81047
[6] Acharya, BS; Figueroa-O’Farrill, JM; Hull, CM; Spence, BJ, Branes at conical singularities and holography, Adv. Theor. Math. Phys., 2, 1249 (1999)
[7] D.R. Morrison and M. Plesser, Nonspherical horizons. 1, Adv. Theor. Math. Phys.3 (1999) 1 [hep-th/9810201] [INSPIRE].
[8] A. Hanany and K.D. Kennaway, Dimer models and toric diagrams, hep-th/0503149 [INSPIRE].
[9] Franco, S.; Hanany, A.; Kennaway, KD; Vegh, D.; Wecht, B., Brane dimers and quiver gauge theories, JHEP, 01, 096 (2006)
[10] Feng, B.; He, Y-H; Kennaway, KD; Vafa, C., Dimer models from mirror symmetry and quivering amoebae, Adv. Theor. Math. Phys., 12, 489 (2008) · Zbl 1144.81501
[11] R. Kenyon, Local statistics of lattice dimers, Ann. Inst. H. PoincaréB 33 (1997) 591 [math.CO/0105054]. · Zbl 0893.60047
[12] R. Kenyon, An introduction to the dimer model, math.CO/0310326. · Zbl 1076.82025
[13] He, Y-H; Seong, R-K; Yau, S-T, Calabi-Yau volumes and reflexive polytopes, Commun. Math. Phys., 361, 155 (2018) · Zbl 1404.14050
[14] Aharony, O.; Bergman, O.; Jafferis, DL; Maldacena, J., N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP, 10, 091 (2008) · Zbl 1245.81130
[15] Bagger, J.; Lambert, N., Modeling multiple M2’s, Phys. Rev. D, 75 (2007)
[16] Gustavsson, A., Algebraic structures on parallel M2-branes, Nucl. Phys. B, 811, 66 (2009) · Zbl 1194.81205
[17] Hanany, A.; Zaffaroni, A., Tilings, Chern-Simons theories and M2 branes, JHEP, 10, 111 (2008) · Zbl 1245.81176
[18] Hanany, A.; Vegh, D.; Zaffaroni, A., Brane tilings and M2 branes, JHEP, 03, 012 (2009)
[19] Franco, S.; Ghim, D.; Lee, S.; Seong, R-K; Yokoyama, D., 2d (0, 2) quiver gauge theories and D-branes, JHEP, 09, 072 (2015)
[20] Franco, S.; Lee, S.; Seong, R-K, Brane brick models, toric Calabi-Yau 4-folds and 2d (0, 2) quivers, JHEP, 02, 047 (2016)
[21] Franco, S.; Lee, S.; Seong, R-K; Vafa, C., Brane brick models in the mirror, JHEP, 02, 106 (2017) · Zbl 1377.81139
[22] Franco, S.; Lee, S.; Seong, R-K, Brane brick models and 2d (0, 2) triality, JHEP, 05, 020 (2016)
[23] A. Gadde, S. Gukov and P. Putrov, (0, 2) trialities, JHEP03 (2014) 076 [arXiv:1310.0818] [INSPIRE].
[24] Franco, S.; Lee, S.; Seong, R-K; Vafa, C., Quadrality for supersymmetric matrix models, JHEP, 07, 053 (2017) · Zbl 1380.81268
[25] Hanany, A.; Seong, R-K, Brane tilings and reflexive polygons, Fortsch. Phys., 60, 695 (2012) · Zbl 1258.81068
[26] Hanany, A.; Seong, R-K, Brane tilings and specular duality, JHEP, 08, 107 (2012) · Zbl 1397.81369
[27] Wei, X.; Ding, R., Lattice polygons with two interior lattice points, Math. Notes, 91, 868 (2012) · Zbl 1287.52002
[28] Park, J.; Rabadán, R.; Uranga, AM, Orientifolding the conifold, Nucl. Phys. B, 570, 38 (2000) · Zbl 0951.81059
[29] Uranga, AM, Brane configurations for branes at conifolds, JHEP, 01, 022 (1999)
[30] Gauntlett, JP; Martelli, D.; Sparks, J.; Waldram, D., Supersymmetric AdS_5solutions of M-theory, Class. Quant. Grav., 21, 4335 (2004) · Zbl 1059.83038
[31] Gauntlett, JP; Martelli, D.; Sparks, J.; Waldram, D., Sasaki-Einstein metrics on S^2× S^3, Adv. Theor. Math. Phys., 8, 711 (2004) · Zbl 1136.53317
[32] Benvenuti, S.; Franco, S.; Hanany, A.; Martelli, D.; Sparks, J., An infinite family of superconformal quiver gauge theories with Sasaki-Einstein duals, JHEP, 06, 064 (2005)
[33] Benvenuti, S.; Hanany, A.; Kazakopoulos, P., The toric phases of the Y^p,qquivers, JHEP, 07, 021 (2005)
[34] Franco, S.; Hanany, A.; Martelli, D.; Sparks, J.; Vegh, D.; Wecht, B., Gauge theories from toric geometry and brane tilings, JHEP, 01, 128 (2006)
[35] Hanany, A.; Kazakopoulos, P.; Wecht, B., A new infinite class of quiver gauge theories, JHEP, 08, 054 (2005)
[36] Feng, B.; Hanany, A.; He, Y-H, Phase structure of D-brane gauge theories and toric duality, JHEP, 08, 040 (2001)
[37] Feng, B.; Franco, S.; Hanany, A.; He, Y-H, UnHiggsing the del Pezzo, JHEP, 08, 058 (2003)
[38] Feng, B.; Franco, S.; Hanany, A.; He, Y-H, Symmetries of toric duality, JHEP, 12, 076 (2002)
[39] Hanany, A.; Seong, R-K, Symmetries of Abelian orbifolds, JHEP, 01, 027 (2011) · Zbl 1214.81217
[40] Davey, J.; Hanany, A.; Seong, R-K, Counting orbifolds, JHEP, 06, 010 (2010) · Zbl 1290.81140
[41] Davey, J.; Hanany, A.; Pasukonis, J., On the classification of brane tilings, JHEP, 01, 078 (2010) · Zbl 1269.81120
[42] Franco, S.; He, Y-H; Sun, C.; Xiao, Y., A comprehensive survey of brane tilings, Int. J. Mod. Phys. A, 32, 1750142 (2017) · Zbl 1375.81197
[43] Closset, C.; Del Zotto, M.; Saxena, V., Five-dimensional SCFTs and gauge theory phases: an M-theory/type IIA perspective, SciPost Phys., 6, 052 (2019)
[44] C. Closset and M. Del Zotto, On 5d SCFTs and their BPS quivers. Part I: B-branes and brane tilings, arXiv:1912.13502 [INSPIRE].
[45] Saxena, V., Rank-two 5d SCFTs from M-theory at isolated toric singularities: a systematic study, JHEP, 20, 198 (2020)
[46] Fulton, W., Introduction to toric varieties, Annals of mathematics studies (1993), Princeton, NJ, U.S.A: Princeton University Press, Princeton, NJ, U.S.A
[47] Cox, D.; Little, J.; Schenck, H., Toric varieties, Graduate studies in mathematics (2011), U.S.A.: American Mathematical Soc, U.S.A. · Zbl 1223.14001
[48] Guralnik, GS; Hagen, CR; Kibble, TWB, Global conservation laws and massless particles, Phys. Rev. Lett., 13, 585 (1964)
[49] Higgs, PW, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett., 13, 508 (1964)
[50] Englert, F.; Brout, R., Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett., 13, 321 (1964)
[51] Yamazaki, M., Brane tilings and their applications, Fortsch. Phys., 56, 555 (2008) · Zbl 1150.81017
[52] J. Bao, Y.-H. He, E. Hirst and S. Pietromonaco, Lectures on the Calabi-Yau landscape, arXiv:2001.01212 [INSPIRE].
[53] Witten, E., Phases of N = 2 theories in two-dimensions, AMS/IP Stud. Adv. Math., 1, 143 (1996) · Zbl 0910.14019
[54] Seiberg, N., Electric-magnetic duality in supersymmetric non-Abelian gauge theories, Nucl. Phys. B, 435, 129 (1995) · Zbl 1020.81912
[55] Beasley, CE; Plesser, M., Toric duality is Seiberg duality, JHEP, 12, 001 (2001)
[56] G. Musiker and C. Stump, A compendium on the cluster algebra and quiver package in sage, arXiv:1102.4844. · Zbl 1293.13008
[57] Hanany, A.; He, Y-H; Jejjala, V.; Pasukonis, J.; Ramgoolam, S.; Rodriguez-Gomez, D., Invariants of toric Seiberg duality, Int. J. Mod. Phys. A, 27, 1250002 (2012) · Zbl 1247.81380
[58] S. Franco, A. Hanany, Y.-H. He and P. Kazakopoulos, Duality walls, duality trees and fractional branes, hep-th/0306092 [INSPIRE].
[59] Hanany, A.; He, Y-H; Sun, C.; Sypsas, S., Superconformal block quivers, duality trees and Diophantine equations, JHEP, 11, 017 (2013)
[60] Forcella, D.; Hanany, A.; He, Y-H; Zaffaroni, A., The master space of N = 1 gauge theories, JHEP, 08, 012 (2008)
[61] Forcella, D.; Hanany, A.; He, Y-H; Zaffaroni, A., Mastering the master space, Lett. Math. Phys., 85, 163 (2008) · Zbl 1162.81410
[62] Martelli, D.; Sparks, J.; Yau, S-T, The geometric dual of a-maximisation for toric Sasaki-Einstein manifolds, Commun. Math. Phys., 268, 39 (2006) · Zbl 1190.53041
[63] Martelli, D.; Sparks, J.; Yau, S-T, Sasaki-Einstein manifolds and volume minimisation, Commun. Math. Phys., 280, 611 (2008) · Zbl 1161.53029
[64] Benvenuti, S.; Feng, B.; Hanany, A.; He, Y-H, Counting BPS operators in gauge theories: quivers, Syzygies and Plethystics, JHEP, 11, 050 (2007) · Zbl 1245.81264
[65] Gubser, SS, Einstein manifolds and conformal field theories, Phys. Rev. D, 59 (1999)
[66] Intriligator, KA; Wecht, B., The exact superconformal R symmetry maximizes a, Nucl. Phys. B, 667, 183 (2003) · Zbl 1059.81602
[67] Butti, A.; Zaffaroni, A., R-charges from toric diagrams and the equivalence of a-maximization and Z-minimization, JHEP, 11, 019 (2005)
[68] A. Butti and A. Zaffaroni, From toric geometry to quiver gauge theory: the equivalence of a-maximization and Z-minimization, hep-th/0512240 [INSPIRE]. · Zbl 1090.81045
[69] Henningson, M.; Skenderis, K., The holographic Weyl anomaly, JHEP, 07, 023 (1998) · Zbl 0958.81083
[70] Freedman, DZ; Gubser, SS; Pilch, K.; Warner, NP, Renormalization group flows from holography supersymmetry and a c theorem, Adv. Theor. Math. Phys., 3, 363 (1999) · Zbl 0976.83067
[71] Altman, R.; Gray, J.; He, Y-H; Jejjala, V.; Nelson, BD, A Calabi-Yau database: threefolds constructed from the Kreuzer-Skarke list, JHEP, 02, 158 (2015) · Zbl 1388.53071
[72] B. Nill, Gorenstein toric Fano varieties, Manuscripta Math.116 (2005) 183 [math.AG/0405448]. · Zbl 1067.14052
[73] Cabrera, S.; Hanany, A., Branes and the Kraft-Procesi transition, JHEP, 11, 175 (2016) · Zbl 1390.81414
[74] Cabrera, S.; Hanany, A., Branes and the Kraft-Procesi transition: classical case, JHEP, 04, 127 (2018) · Zbl 1390.81415
[75] Bourget, A., The Higgs mechanism — Hasse diagrams for symplectic singularities, JHEP, 01, 157 (2020)
[76] Bourget, A.; Cabrera, S.; Grimminger, JF; Hanany, A.; Zhong, Z., Brane webs and magnetic quivers for SQCD, JHEP, 03, 176 (2020) · Zbl 1435.81155
[77] Cabrera, S.; Hanany, A.; Sperling, M., Magnetic quivers, Higgs branches and 6d N = (1, 0) theories — orthogonal and symplectic gauge groups, JHEP, 02, 184 (2020)
[78] J.F. Grimminger and A. Hanany, Hasse diagrams for 3d N = 4 quiver gauge theories — inversion and the full moduli space, arXiv:2004.01675 [INSPIRE].
[79] G. Balletti and A.M. Kasprzyk, Three-dimensional lattice polytopes with two interior lattice points, arXiv:1612.08918.
[80] Batyrev, VV, Toroidal Fano 3-folds, Math. USSR Izv., 19, 13 (1982) · Zbl 0495.14027
[81] V.V. Batyrev and L.A. Borisov, On Calabi-Yau complete intersections in toric varieties, alg-geom/9412017 [INSPIRE]. · Zbl 0908.14015
[82] Kreuzer, M.; Skarke, H., On the classification of reflexive polyhedra, Commun. Math. Phys., 185, 495 (1997) · Zbl 0894.14026
[83] Kreuzer, M.; Skarke, H., Classification of reflexive polyhedra in three-dimensions, Adv. Theor. Math. Phys., 2, 853 (1998) · Zbl 0934.52006
[84] Kreuzer, M.; Skarke, H., Complete classification of reflexive polyhedra in four-dimensions, Adv. Theor. Math. Phys., 4, 1209 (2002) · Zbl 1017.52007
[85] M. Kreuzer and H. Skarke, PALP: a Package for Analyzing Lattice Polytopes with applications to toric geometry, Comput. Phys. Commun.157 (2004) 87 [math.NA/0204356] [INSPIRE]. · Zbl 1196.14007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.