zbMATH — the first resource for mathematics

Phenomenology of event shapes at hadron colliders. (English) Zbl 1290.81159
Summary: We present results for matched distributions of a range of dijet event shapes at hadron colliders, combining next-to-leading logarithmic (NLL) accuracy in the resummation exponent, next-to-next-to leading logarithmic (NNLL) accuracy in its expansion and next-to-leading order (NLO) accuracy in a pure \(\alpha_{s}\) expansion. This is the first time that such a matching has been carried out for hadronic final-state observables at hadron colliders. We compare our results to Monte Carlo predictions, with and without matching to multi-parton tree-level fixed-order calculations. These studies suggest that hadron-collider event shapes have significant scope for constraining both perturbative and non-perturbative aspects of hadron-collider QCD. The differences between various calculational methods also highlight the limits of relying on simultaneous variations of renormalisation and factorisation scale in making reliable estimates of uncertainties in QCD predictions. We also discuss the sensitivity of event shapes to the topology of multi-jet events, which are expected to appear in many New Physics scenarios.

81V05 Strong interaction, including quantum chromodynamics
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81T16 Nonperturbative methods of renormalization applied to problems in quantum field theory
65C05 Monte Carlo methods
81T80 Simulation and numerical modelling (quantum field theory) (MSC2010)
Full Text: DOI arXiv
[1] Kluth, S.; Movilla Fernandez, PA; Bethke, S.; Pahl, C.; PfeifenSchneider, P., A measurement of the QCD colour factors using event shape distributions at \( \sqrt {s} = 14\;{\text{GeV}} \) to 189-gev, Eur. Phys. J., C 21, 199, (2001)
[2] Bethke, S., \(α\)_{\(s\)} 2002, Nucl. Phys. Proc. Suppl., 121, 74, (2003)
[3] Marchesini, G.; etal., HERWIG: a Monte Carlo event generator for simulating hadron emission reactions with interfering gluons. version 5.1 — April 1991, Comput. Phys. Commun., 67, 465, (1992)
[4] Corcella, G.; etal., HERWIG 6.5: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), JHEP, 01, 010, (2001)
[5] Sjöstrand, T.; Mrenna, S.; Skands, PZ, PYTHIA 6.4 physics and manual, JHEP, 05, 026, (2006)
[6] Lönnblad, L., ARIADNE version 4: a program for simulation of QCD cascades implementing the color dipole model, Comput. Phys. Commun., 71, 15, (1992)
[7] DELPHI collaboration; Abreu, P.; etal., Tuning and test of fragmentation models based on identified particles and precision event shape data, Z. Phys., C 73, 11, (1996)
[8] Korchemsky, GP; Sterman, G., Nonperturbative corrections in resummed cross-sections, Nucl. Phys., B 437, 415, (1995)
[9] Dokshitzer, YL; Webber, BR, Calculation of power corrections to hadronic event shapes, Phys. Lett., B 352, 451, (1995)
[10] Beneke, M.; Braun, VM, Power corrections and renormalons in Drell-Yan production, Nucl. Phys., B 454, 253, (1995)
[11] Akhoury, R.; Zakharov, VI, Leading power corrections in QCD: from renormalons to phenomenology, Nucl. Phys., B 465, 295, (1996)
[12] Dokshitzer, YL; Marchesini, G.; Webber, BR, Dispersive approach to power-behaved contributions in QCD hard processes, Nucl. Phys., B 469, 93, (1996)
[13] Dasgupta, M.; Webber, BR, Power corrections to event shapes in deep inelastic scattering, Eur. Phys. J., C 1, 539, (1998)
[14] Dokshitzer, YL; Webber, BR, Power corrections to event shape distributions, Phys. Lett., B 404, 321, (1997)
[15] Dokshitzer, YL; Lucenti, A.; Marchesini, G.; Salam, GP, On the universality of the Milan factor for 1/Q power corrections to jet shapes, JHEP, 05, 003, (1998)
[16] Korchemsky, GP; Sterman, G., Power corrections to event shapes and factorization, Nucl. Phys., B 555, 335, (1999)
[17] Dasgupta, M.; Magnea, L.; Smye, G., Universality of 1/Q corrections revisited, JHEP, 11, 025, (1999)
[18] Gardi, E.; Rathsman, J., The thrust and heavy-jet mass distributions in the two-jet region, Nucl. Phys., B 638, 243, (2002)
[19] C. Lee and G. Sterman, Universality of nonperturbative effects in event shapes, in the proceedings of the FRIF workshop on first principles non-perturbative QCD of hadron jets, January 12-14, LPTHE, Paris, France (2006), hep-ph/0603066 [SPIRES].
[20] Beneke, M., Renormalons, Phys. Rept., 317, 1, (1999)
[21] Dasgupta, M.; Salam, GP, Event shapes in \(e\)\^{}{+}\(e\)\^{}{−} annihilation and deep inelastic scattering, J. Phys., G 30, 143, (2004)
[22] Dokshitzer, YL; Lucenti, A.; Marchesini, G.; Salam, GP, On the QCD analysis of jet broadening, JHEP, 01, 011, (1998)
[23] Dasgupta, M.; Salam, GP, Resummation of non-global QCD observables, Phys. Lett., B 512, 323, (2001)
[24] Dasgupta, M.; Salam, GP, Accounting for coherence in interjet \(E\)_{\(t\)} flow: a case study, JHEP, 03, 017, (2002)
[25] Banfi, A.; Salam, GP; Zanderighi, G., Semi-numerical resummation of event shapes, JHEP, 01, 018, (2002)
[26] Antonelli, V.; Dasgupta, M.; Salam, GP, Resummation of thrust distributions in DIS, JHEP, 02, 001, (2000)
[27] Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, EWN; Heinrich, G., NNLO corrections to event shapes in \(e\)\^{}{+}\(e\)\^{}{−} annihilation, JHEP, 12, 094, (2007)
[28] Becher, T.; Schwartz, MD, A precise determination of \(α\)_{\(s\)} from LEP thrust data using effective field theory, JHEP, 07, 034, (2008)
[29] Weinzierl, S., NNLO corrections to 3-jet observables in electron-positron annihilation, Phys. Rev. Lett., 101, 162001, (2008)
[30] Dasgupta, M.; Salam, GP, Event shapes in \(e\)\^{}{+}\(e\)\^{}{−} annihilation and deep inelastic scattering, J. Phys., G 30, 143, (2004)
[31] CDF collaboration; Abe, F.; etal., Measurement of QCD jet broadening in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.8\;{\text{TeV}} \), Phys. Rev., D 44, 601, (1991)
[32] D0 collaboration; Bertram, IA, Jet results at the D0 experiment, Acta Phys. Polon., B 33, 3141, (2002)
[33] C. Mesropian, Diffractive W, Z and dijet production in CDF, talk given at the XVII International Workshop on Deep-Inelastic Scattering and Related Subjects, April 26-30, Madrid, Spain (2009), http://www-cdf.fnal.gov/physics/talks_transp/2009/mesropian_1_dis2009.pdf.
[34] Nagy, Z., Three-jet cross sections in hadron hadron collisions at next-to-leading order, Phys. Rev. Lett., 88, 122003, (2002)
[35] Nagy, Z., Next-to-leading order calculation of three jet observables in hadron hadron collision, Phys. Rev., D 68, 094002, (2003)
[36] Banfi, A.; Marchesini, G.; Smye, G.; Zanderighi, G., Out-of-plane QCD radiation in hadronic Z0 production, JHEP, 08, 047, (2001)
[37] Banfi, A.; Salam, GP; Zanderighi, G., Resummed event shapes at hadron-hadron colliders, JHEP, 08, 062, (2004)
[38] I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Factorization at the LHC: from PDFs to initial state jets, arXiv:0910.0467 [SPIRES].
[39] G. Dissertori, F. Moortgat and M.A. Weber, Hadronic event-shape variables at CMS, arXiv:0810.3208 [SPIRES].
[40] Thaler, J.; Wang, L-T, Strategies to identify boosted tops, JHEP, 07, 092, (2008)
[41] Almeida, LG; Lee, SJ; Perez, G.; Sung, I.; Virzi, J., Top jets at the LHC, Phys. Rev., D 79, 074012, (2009)
[42] Almeida, LG; etal., Substructure of high-\(p\)_{\(T\)} jets at the LHC, Phys. Rev., D 79, 074017, (2009)
[43] G.P. Salam, Towards jetography, arXiv:0906.1833 [SPIRES].
[44] Brown, N.; Stirling, WJ, Jet cross-sections at leading double logarithm in \(e\)\^{}{+}\(e\)\^{}{−} annihilation, Phys. Lett., B 252, 657, (1990)
[45] Banfi, A.; Salam, GP; Zanderighi, G., Principles of general final-state resummation and automated implementation, JHEP, 03, 073, (2005)
[46] Catani, S.; Trentadue, L.; Turnock, G.; Webber, BR, Resummation of large logarithms in \(e\)\^{}{+}\(e\)\^{}{−} event shape distributions, Nucl. Phys., B 407, 3, (1993)
[47] Florian, D.; Grazzini, M., The back-to-back region in \(e\)\^{}{+}\(e\)\^{}{−} energy energy correlation, Nucl. Phys., B 704, 387, (2005)
[48] Florian, D.; Grazzini, M., Next-to-next-to-leading logarithmic corrections at small transverse momentum in hadronic collisions, Phys. Rev. Lett., 85, 4678, (2000)
[49] Bozzi, G.; Catani, S.; Florian, D.; Grazzini, M., The \(q\)_{\(T\)} spectrum of the Higgs boson at the LHC in QCD perturbation theory, Phys. Lett., B 564, 65, (2003)
[50] Gehrmann, T.; Luisoni, G.; Stenzel, H., Matching NLLA+NNLO for event shape distributions, Phys. Lett., B 664, 265, (2008)
[51] Banfi, A.; Marchesini, G.; Smye, G., Away-from-jet energy flow, JHEP, 08, 006, (2002)
[52] Weigert, H., Non-global jet evolution at finite \(N\)_{\(c\)}, Nucl. Phys., B 685, 321, (2004)
[53] Forshaw, JR; Kyrieleis, A.; Seymour, MH, Super-leading logarithms in non-global observables in QCD, JHEP, 08, 059, (2006)
[54] Forshaw, JR; Kyrieleis, A.; Seymour, MH, Super-leading logarithms in non-global observables in QCD: colour basis independent calculation, JHEP, 09, 128, (2008)
[55] A. Banfi, G.P. Salam and G. Zanderighi, Hadron-collider event shapes, http://www.lpthe.jussieu.fr/˜salam/pp-event-shapes/.
[56] Dasgupta, M.; Salam, GP, Resummed event-shape variables in DIS, JHEP, 08, 032, (2002)
[57] M. Weber, private communication.
[58] Farhi, E., A QCD test for jets, Phys. Rev. Lett., 39, 1587, (1977)
[59] Fox, GC; Wolfram, S., Observables for the analysis of event shapes in \(e\)\^{}{+}\(e\)\^{}{−} annihilation and other processes, Phys. Rev. Lett., 41, 1581, (1978)
[60] Fox, GC; Wolfram, S., Event shapes in \(e\)\^{}{+}\(e\)\^{}{−} annihilation, Nucl. Phys., B 149, 413, (1979)
[61] A. Banfi, G.P. Salam and G. Zanderighi, unpublished (2004), http://www.qcd-caesar.org/
[62] A. Banfi, G.P. Salam and G. Zanderighi, unpublished (2004), http://home.fnal.gov/˜zanderi/Caesar/Observables/Obs_ee/node7.html
[63] Catani, S.; Dokshitzer, YL; Seymour, MH; Webber, BR, Longitudinally invariant \(K\)_{\(t\)} clustering algorithms for hadron hadron collisions, Nucl. Phys., B 406, 187, (1993)
[64] Ellis, SD; Soper, DE, Successive combination jet algorithm for hadron collisions, Phys. Rev., D 48, 3160, (1993)
[65] G.C. Blazey et al., Run II jet physics, hep-ex/0005012 [SPIRES].
[66] Clavelli, L., Jet invariant mass in quantum chromodynamics, Phys. Lett., B 85, 111, (1979)
[67] Chandramohan, T.; Clavelli, L., Consequences of second order QCD for jet structure in \(e\)\^{}{+}\(e\)\^{}{−} annihilation, Nucl. Phys., B 184, 365, (1981)
[68] Clavelli, L.; Wyler, D., Kinematical bounds on jet variables and the heavy jet mass distribution, Phys. Lett., B 103, 383, (1981)
[69] The ATLAS collaboration, G. Aad et al., Expected performance of the ATLAS experiment — Detector, trigger and physics, arXiv:0901.0512 [SPIRES].
[70] CMS collaboration; Bayatian, GL; etal., CMS technical design report, volume II: physics performance, J. Phys., G 34, 995, (2007)
[71] Dasgupta, M.; Salam, GP, Resummed event-shape variables in DIS, JHEP, 08, 032, (2002)
[72] Banfi, A.; Salam, GP; Zanderighi, G., Infrared safe definition of jet flavor, Eur. Phys. J., C 47, 113, (2006)
[73] Collins, JC; Soper, DE; Sterman, G., Transverse momentum distribution in Drell-Yan pair and W and Z boson production, Nucl. Phys., B 250, 199, (1985)
[74] Botts, J.; Sterman, G., Hard elastic scattering in QCD: leading behavior, Nucl. Phys., B 325, 62, (1989)
[75] Kidonakis, N.; Sterman, G., Subleading logarithms in QCD hard scattering, Phys. Lett., B 387, 867, (1996)
[76] Kidonakis, N.; Sterman, G., Resummation for QCD hard scattering, Nucl. Phys., B 505, 321, (1997)
[77] Kidonakis, N.; Oderda, G.; Sterman, G., Evolution of color exchange in QCD hard scattering, Nucl. Phys., B 531, 365, (1998)
[78] Oderda, G., Dijet rapidity gaps in photoproduction from perturbative QCD, Phys. Rev., D 61, 014004, (2000)
[79] Kidonakis, N.; Owens, JF, Effects of higher-order threshold corrections in high-\(E\)_{\(T\)} jet production, Phys. Rev., D 63, 054019, (2001)
[80] Collins, JC; Soper, DE, Back-to-back jets in QCD, Nucl. Phys., B 193, 381, (1981)
[81] Collins, JC; Soper, DE, Back-to-back jets: Fourier transform from B to K-transverse, Nucl. Phys., B 197, 446, (1982)
[82] Kodaira, J.; Trentadue, L., Summing soft emission in QCD, Phys. Lett., B 112, 66, (1982)
[83] Kodaira, J.; Trentadue, L., Single logarithm effects in electron-positron annihilation, Phys. Lett., B 123, 335, (1983)
[84] Dokshitzer, YL; Leder, GD; Moretti, S.; Webber, BR, Better jet clustering algorithms, JHEP, 08, 001, (1997)
[85] Salam, GP; Rojo, J., A higher order perturbative parton evolution toolkit (HOPPET), Comput. Phys. Commun., 180, 120, (2009)
[86] Banfi, A.; Salam, GP; Zanderighi, G., Generalized resummation of QCD final-state observables, Phys. Lett., B 584, 298, (2004)
[87] Fadin, VS, Double logarithmic asymptotics of the cross-sections of \(e\)\^{}{+}\(e\)\^{}{−} annihilation into quarks and gluons (in Russian), Yad. Fiz., 37, 408, (1983)
[88] Ermolaev, BI; Fadin, VS, Log - log asymptotic form of exclusive cross-sections in quantum chromodynamics, JETP Lett., 33, 269, (1981)
[89] Mueller, AH, On the multiplicity of hadrons in QCD jets, Phys. Lett., B 104, 161, (1981)
[90] Dokshitzer, YL; Fadin, VS; Khoze, VA, Double logs of perturbative QCD for parton jets and soft hadron spectra, Zeit. Phys., C 15, 325, (1982)
[91] Bassetto, A.; Ciafaloni, M.; Marchesini, G., Jet structure and infrared sensitive quantities in perturbative QCD, Phys. Rept., 100, 201, (1983)
[92] Salam, GP; Soyez, G., A practical seedless infrared-safe cone jet algorithm, JHEP, 05, 086, (2007)
[93] Pumplin, J.; etal., New generation of parton distributions with uncertainties from global QCD analysis, JHEP, 07, 012, (2002)
[94] Cacciari, M.; Salam, GP, Dispelling the \(N\)\^{}{3} myth for the \(k\)_{\(t\)} jet-finder, Phys. Lett., B 641, 57, (2006)
[95] M. Cacciari, G.P. Salam and G. Soyez, FastJethttp://fastjet.fr/.
[96] ZEUS collaboration; Chekanov, S.; etal., Dijet production in neutral current deep inelastic scattering at HERA, Eur. Phys. J., C 23, 13, (2002)
[97] H1 collaboration; Aktas, A.; etal., Inclusive dijet production at low bjorken-x in deep inelastic scattering, Eur. Phys. J., C 33, 477, (2004)
[98] Klasen, M.; Kramer, G., Dijet cross-sections at \(O\)(αα_{\(S\)}\^{}{2}) in photon-proton collisions, Phys. Lett., B 366, 385, (1996)
[99] Frixione, S.; Ridolfi, G., Jet photoproduction at HERA, Nucl. Phys., B 507, 315, (1997)
[100] Banfi, A.; Dasgupta, M., Dijet rates with symmetric \(E\)_{\(t\)} cuts, JHEP, 01, 027, (2004)
[101] Parisi, G.; Petronzio, R., Small transverse momentum distributions in hard processes, Nucl. Phys., B 154, 427, (1979)
[102] Dasgupta, M.; Salam, GP, Resummation of the jet broadening in DIS, Eur. Phys. J., C 24, 213, (2002)
[103] Catani, S.; Webber, BR, Infrared safe but infinite: soft gluon divergences inside the physical region, JHEP, 10, 005, (1997)
[104] Mangano, ML; Moretti, M.; Piccinini, F.; Pittau, R.; Polosa, AD, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP, 07, 001, (2003)
[105] Alwall, J.; etal., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J., C 53, 473, (2008)
[106] Catani, S.; Krauss, F.; Kuhn, R.; Webber, BR, QCD matrix elements + parton showers, JHEP, 11, 063, (2001)
[107] CTEQ collaboration; Lai, HL; etal., Global QCD analysis of parton structure of the nucleon: CTEQ5 parton distributions, Eur. Phys. J., C 12, 375, (2000)
[108] Skands, PZ; Wicke, D., Non-perturbative QCD effects and the top mass at the tevatron, Eur. Phys. J., C 52, 133, (2007)
[109] P.Z. Skands, The Perugia tunes, arXiv:0905.3418 [SPIRES].
[110] A. Buckley, H. Hoeth, H. Lacker, H. Schulz and E. von Seggern, Monte Carlo tuning and generator validation, arXiv:0906.0075 [SPIRES].
[111] Nagy, Z.; Soper, DE, On the transverse momentum in Z-boson production in a virtuality ordered parton shower, JHEP, 03, 097, (2010)
[112] Dasgupta, M.; Delenda, Y., Aspects of power corrections in hadron-hadron collisions, JHEP, 11, 013, (2007)
[113] Dasgupta, M.; Magnea, L.; Salam, GP, Non-perturbative QCD effects in jets at hadron colliders, JHEP, 02, 055, (2008)
[114] Dasgupta, M.; Delenda, Y., On the universality of hadronisation corrections to QCD jets, JHEP, 07, 004, (2009)
[115] Butterworth, JM; Forshaw, JR; Seymour, MH, Multiparton interactions in photoproduction at HERA, Z. Phys., C 72, 637, (1996)
[116] TeV4LHC QCD Working Group collaboration, M.G. Albrow et al., Tevatron-for-LHC report of the QCD working group, hep-ph/0610012 [SPIRES].
[117] Han, T.; Si, Z.; Zurek, KM; Strassler, MJ, Phenomenology of hidden valleys at hadron colliders, JHEP, 07, 008, (2008)
[118] M.J. Strassler, On the phenomenology of hidden valleys with heavy flavor, arXiv:0806.2385 [SPIRES].
[119] Randall, L.; Tucker-Smith, D., Dijet searches for supersymmetry at the LHC, Phys. Rev. Lett., 101, 221803, (2008)
[120] Banfi, A.; Salam, GP; Zanderighi, G., Accurate QCD predictions for heavy-quark jets at the tevatron and LHC, JHEP, 07, 026, (2007)
[121] J. Campbell and K. Ellis, MCFM — Monte Carlo for FeMtobarn processes, http://mcfm.fnal.gov/.
[122] Kleiss, R.; Stirling, WJ; Ellis, SD, A new Monte Carlo treatment of multiparticle phase space at high-energies, Comput. Phys. Commun., 40, 359, (1986)
[123] Catani, S.; Seymour, MH, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys., B 485, 291, (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.