×

FPGA computation of the 3D heat equation. (English) Zbl 1201.65159

Summary: Efficient solution of the heat equation is one of the recursive topics in computational physics. Over the years, different software solutions have been proposed, taking advantage of today’s impressive computing power of parallel machines. In this work, we consider a hybrid software-hardware approach making use of a field-programmable gate array platform as a heat equation solver that can be easily attached to a PC using a PCI bus with the goal of obtaining a portable system to be used during field experiments. The system has been successfully used for the non-destructive inspection of soils in mine detection applications based on infrared thermography techniques.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35K05 Heat equation
86A20 Potentials, prospecting
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Savelyev, T.G., van Kempen, L., Sahli, H., Sachs, J., Sato, M: Investigation of time-frequency features for GPR landmine discrimination. IEEE Trans. Geosci. Remote Sens. 45(1), 118–129 (2007). doi: 10.1109/TGRS.2006.885077 · doi:10.1109/TGRS.2006.885077
[2] Thanh, N.T., Sahli, H., Hao, D.N: Finite-difference methods and validity of a thermal model for landmine detection with soil propierty estimation. IEEE Trans. Geosci. Remote Sens. 45(3), 656–674 (2007). doi: 10.1109/TGRS.2006.888862 · doi:10.1109/TGRS.2006.888862
[3] Thanh, N.T., Sahli, H., Hao, D.N: Infrared thermography for buried landmine detection: inverse problem setting. IEEE Trans. Geosci. Remote Sens. 46(12), 3987–4004 (2008). doi: 10.1109/TGRS.2008.2000926 · doi:10.1109/TGRS.2008.2000926
[4] López, P., van Kempen, L., Sahli, H., Cabello, D.: Improved thermal analysis of buried landmines. IEEE Transactions Geoscience and Remote Sensing 42(9), 1955–1964 (2004). doi: 10.1109/TGRS.2004.831884 · doi:10.1109/TGRS.2004.831443
[5] Schneider, R., Turner, L.E., Okoniewski, M.: Application of FPGA technology to accelerate the Finite-Difference Time-Domain (FD-TD) method. In: Proceedings of the 10th ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 97–105 (2002)
[6] Placidi, P., Verducci, L., Matrella, G., Roselli, L., Ciampiolini, P.: A custom VLSI architecture for the solution of FDTD equations. IEICE Trans. Electron. E85-C, 572–577 (2002)
[7] Durbano, J.P., Ortiz, F.E., Humphrey, J.R., Curt, P.F., Prather, D.W.: FPGA-based acceleration of the 3D finite-difference time-domain method. In: Proceedings of the 12th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, Napa, USA, pp. 156–163 (2004). doi: 10.1109/FCCM.2004.37
[8] Khanafer, K., Vafai, K.: Thermal analysis of buried land mines over a diurnal cycle. IEEE Trans. Geosci. Remote Sens. 40(2), 461–473 (2002). doi: 10.1109/36.992811 · doi:10.1109/36.992811
[9] Sendur, I.K., Baertlein, B.A.: Numerical Simulation of thermal signatures of buried mines over a diurnal cycle. In: Detection and Remediation Technologies for Mines and Minelike Targets. Proceedings of the SPIE, pp. 156–167 (2000)
[10] Watson, K.: Geologic applications of thermal infrared images. Proc. IEEE 63(1), 128–137 (1973) · doi:10.1109/PROC.1975.9712
[11] Incropera, F., DeWitt, D.: Introduction to heat transfer, 4th edn., 912 pp. Wiley, New York (2002)
[12] Wang, T., Chen, C.C.: 3-D thermal-ADI: a linear-time chip level transient thermal simulator. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 21(12), 1434–1445 (2002). doi: 10.1109/TCAD.2002.804385 · Zbl 05450030 · doi:10.1109/TCAD.2002.804385
[13] Pardo, F., López, P., Cabello, D.: FPGA-based hardware accelerator of the heat equation with applications on infrared thermography. In: Proceedings of ASAP08, pp. 179–184 (2008)
[14] Pardo, F., López, P., Balsi, M., Cabello, D.: FPGA implementation of 3-D thermal model simulator. In: Proceedings of 16th International Conference on Field Programmable Logic and Applications, Madrid, Spain, pp. 633–636 (2006). doi: 10.1109/FPL.2006.311285
[15] de Jong, W, Lensen, H.A., Janssen, H.L.: Sophisticated test facilities to detect land mines. In: Detection and Remediation Technologies for Mines and Minelike Targets IV, vol. 3710, pp. 1409–1418 (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.