×

zbMATH — the first resource for mathematics

Consistent modelling of VIX and equity derivatives using a \(3/2\) plus jumps model. (English) Zbl 1395.91429
Summary: The paper demonstrates that a pure-diffusion \(3/2\) model is able to capture the observed upward-sloping implied volatility skew in VIX options. This observation contradicts a common perception in the literature that jumps are required for the consistent modelling of equity and VIX derivatives. The pure-diffusion model, however, struggles to reproduce the smile in the implied volatilities of short-term index options. The pronounced implied volatility smile produces artificially inflated fitted parameters, resulting in unrealistically high VIX option implied volatilities. To remedy these shortcomings, jumps are introduced. The resulting model is able to better fit short-term index option implied volatilities while producing more realistic VIX option implied volatilities, without a loss in tractability.

MSC:
91G20 Derivative securities (option pricing, hedging, etc.)
60J75 Jump processes (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Andersen, L. B. G., & Piterbarg, V. (2007). Moment explosions in stochastic volatility models. Finance and Stochastics, 11, 29-50. · Zbl 1142.65004
[2] Bakshi, G., Ju, N., & Yang, H. (2006). Estimation of continuous time models with an application to equity volatility. Journal of Financial Economics, 82, 227-249.
[3] Baldeaux, J. (2012). Exact simulation of the 3/2 model. International Journal of Theoretical and Applied Finance, 15,1-13. · Zbl 1262.91114
[4] Bates, D. (1996). Jumps and stochastic volatility: Exchange rate processes implicit in Deutsche mark options. Review of Financial Studies, 9, 69-107.
[5] Bayraktar, E., Kardaras, C., & Xing, H. (2012). Valuation equations for stochastic volatility models. SIAM Journal of Financial Mathematics, 3,351-373. · Zbl 1255.91125
[6] Bergomi, L. (2005). Smile dynamics III. Risk, 18, 67-73.
[7] Bergomi, L. (2009). Smile dynamics IV. Risk, (December), 94-100.
[8] Carr, P., Geman, H., Madan, D., & Yor, M. (2005). Pricing options on realized variance. Finance and Stochastics, 9, 453-475. · Zbl 1096.91022
[9] Carr, P., & Madan, D. (1999). Option pricing using the fast Fourier transform. Journal of Computational Finance, 4, 61-73.
[10] Carr, P., & Sun, J. (2007). A new approach for option pricing under stochastic volatility. Review of Derivatives Research, 10, 87-150. · Zbl 1140.91353
[11] Cont, R., & Kokholm, T. (2013). A consistent pricing model for index options and volatility derivatives. Mathematical Finance, 23,248-274. · Zbl 1262.91132
[12] Drimus, G. G. (2012). Options on realized variance by transform methods: A non-affine stochastic volatility model. Quantitative Finance, 12, 1679-1694. · Zbl 1279.91156
[13] Duffie, D., Pan, J., & Singleton, K. (2000). Transform analysis and asset pricing for affine jump-diffusion. Econometrica, 68, 1343-1376. · Zbl 1055.91524
[14] Fang, F., & Osterlee, K. (2008). A novel pricing method for European options based on Fourier-cosine series expansions. SIAM Journal of Scientific Computing, 31, 826-848. · Zbl 1186.91214
[15] Gatheral, J. (2006). The volatility surface: A practioner’s guide. Hoboken, NJ: Wiley Finance.
[16] Goard, J., & Mazur, M. (2013). Stochastic volatility models and the pricing of VIX options. Mathematical Finance, 23(3), 439-458. · Zbl 1281.91131
[17] Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. Review of Financial Studies, 6, 327-343. · Zbl 1384.35131
[18] Heston, S. L. (2012). A simple new formula for options with stochastic volatility, Working paper Washington University of St. Louis, St Louis, MO.
[19] Itkin, A., & Carr, P. (2010). Pricing swaps and options on quadratic variation under stochastic time change models -8 discrete observations case. Review of Derivatives Research, 13, 141-176. · Zbl 1208.91146
[20] Jeanblanc, M., Yor, M., & Chesney, M. (2009). Mathematical methods for financial markets. Berlin: Springer Finance, Springer. · Zbl 1205.91003
[21] Karatzas, I., & Shreve, S. (1991). Brownian motion and stochastic calculus. New York, NY: Springer-Verlag. · Zbl 0734.60060
[22] Lewis, A. L. (2000). Option valuation under stochastic volatility. Newport Beach, CA: Finance Press. · Zbl 0937.91060
[23] Lian, G. H., & Zhu, S. P. (2013). Pricing VIX options with stochastic volatility and random jumps. Decisions in Economics and Finance, 36(1), 71-88. · Zbl 1273.91442
[24] Medvedev, A., & Scaillet, O. (2007). Approximation and calibration of short-term implied volatilities under jump-diffusion stochastic volatility. Review of Financial Studies, 20, 427-459.
[25] Meyer-Dautrich, S., & Vierthauer, R. (2011, December). Pricing target volatility Fund derivatives. Quantitative methods in finance conference presentation, Sydney.
[26] Mijatović, A., & Urusov, M. (2012). On the martingale property of certain local martingales. Probability Theory and Related Fields, 152, 1-30.
[27] Sepp, A. (2008). VIX option pricing in a jump-diffusion model. Risk, (April), 84-89.
[28] Sepp, A. (2011, November). Parametric and non-parametric local volatility models: Achieving consistent modeling of VIX and equity derivatives. Quant Congress Europe, London conference presentation, London.
[29] Sin, C. A. (1998). Complications with stochastic volatility models, Advances in Applied Probability, 30, 256-268. · Zbl 0907.90026
[30] Zhang, J. E., & Zhu, Y. (2006). VIX futures. Journal of Futures Markets, 26, 521-531.
[31] Zhu, S.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.