×

Effects of axial preload of ball bearing on the nonlinear dynamic characteristics of a rotor-bearing system. (English) Zbl 1170.74346

Summary: This research studies the effects of axial preload on nonlinear dynamic characteristics of a flexible rotor supported by angular contact ball bearings. A dynamic model of ball bearings is improved for modeling a five-degree-of-freedom rotor bearing system. The predicted results are in good agreement with prior experimental data, thus validating the proposed model. With or without considering unbalanced forces, the Floquet theory is employed to investigate the bifurcation and stability of system periodic solution. With the aid of Poincarè maps and frequency response, the unstable motion of system is analyzed in detail. Results show that the effects of axial preload applied to ball bearings on system dynamic characteristics are significant. The unstable periodic solution of a balanced rotor bearing system can be avoided when the applied axial preload is sufficient. The bifurcation margins of an unbalanced rotor bearing system enhance markedly as the axial preload increases and relates to system resonance speed.

MSC:

74H60 Dynamical bifurcation of solutions to dynamical problems in solid mechanics
74H55 Stability of dynamical problems in solid mechanics
74-05 Experimental work for problems pertaining to mechanics of deformable solids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bai, C.Q.: Research on nonlinear dynamic performance and stability of liquid-rocket-engine turbopump rotor system. Dissertation, Xi’an Jiaotong University (2006)
[2] Perret, H.: Elastische Spielschwingungen Konstant Belasteter Wälzlager. Werkstatt Betr. 83, 354–358 (1950)
[3] Meldau, E.: Die Bewegung der Achse von Wälzlagern bei Geringen Drehzahlen. Werkstatt Betr. 84, 308–313 (1951)
[4] Jones, A.B.: A general theory of elastically constrained ball and radial roller bearings under arbitrary load and speed conditions. ASME J Basic Eng. 82, 309–320 (1960)
[5] Gutafsson, O.G., Tallian, T., et al.: Research report on study of the vibration characteristics of bearings. Report: AL631023, Reg: 585 14:4223 SKF Ind., Inc (1963)
[6] Gupta, P.L.: Dynamics of rolling element bearings, parts I to IV. ASME J. Lubr. Technol. 101, 293–326 (1979) · doi:10.1115/1.3453357
[7] Saito, S.: Calculation of non-linear unbalance response of horizontal Jeffcott rotors supported by ball bearings with radial clearances. ASME J. Vib. Acoust. Stress Reliab. Des. 107, 416–420 (1985)
[8] de Mul, J.M., Vree, J.M., Maas, D.A.: Equilibrium and associated load distribution in ball and roller bearings loaded in five degrees of freedom while neglecting friction–part I: general theory and application to ball bearings. ASME J. Tribol. 111, 142–148 (1989) · doi:10.1115/1.3261864
[9] Liew, A., Feng, N., Hahn, E.J.: Transient rotordynamic modeling of rolling element bearing systems. ASME J. Eng. Gas Turbines Power 124, 984–991 (2002) · doi:10.1115/1.1479337
[10] Jang, G.H., Jeong, S.W.: Nonlinear excitation model of ball bearing waviness in a rigid rotor supported by two or more ball bearings considering five degrees of freedom. ASME J. Tribol. 124, 82–90 (2002) · doi:10.1115/1.1398289
[11] Jang, G.H., Jeong, S.W.: Analysis of a ball bearing with waviness considering the centrifugal force and gyroscopic moment of the ball. ASME J. Tribol. 125, 487–498 (2003) · doi:10.1115/1.1538618
[12] Tiwari, M., Gupta, K., Prakash, O.: Effect of radial internal clearance of a ball bearing on the dynamics of a balanced horizontal rotor. J. Sound Vib. 238, 723–756 (2000) · doi:10.1006/jsvi.1999.3109
[13] Tiwari, M., Gupta, K., Prakash, O.: Dynamic response of an unbalanced rotor supported on ball bearings. J. Sound Vib. 238, 757–779 (2000) · doi:10.1006/jsvi.1999.3108
[14] Harsha, S.P., Sandeep, K., Prakash, R.: The effect of speed of balanced rotor on nonlinear vibrations associated with ball bearings. Int. J. Mech. Sci. 45, 725–740 (2003) · doi:10.1016/S0020-7403(03)00064-X
[15] Harsha, S.P., Kankar, P.K.: Stability analysis of a rotor bearing system due to surface waviness and number of balls. Int. J. Mech. Sci. 46, 1057–1081 (2004) · Zbl 1078.74015 · doi:10.1016/j.ijmecsci.2004.07.007
[16] Gad, E.H., Fukata, S., Tamura, H.: Computer simulation of rotor axial and radial vibrations due to ball bearings. Mem. Fac. Eng. Kyushu Univ. 44(2), 169–189 (1984)
[17] Aktüuk, N., Uneeb, M., Gohar, R.: The effects of number of balls and preload on vibrations associated with ball bearings. ASME J. Tribol. 119, 747–753 (1997) · doi:10.1115/1.2833880
[18] Bai, C.Q., Xu, Q.Y.: Dynamic model of ball bearing with internal clearance and waviness. J. Sound Vib. 294, 23–48 (2006) · doi:10.1016/j.jsv.2005.10.005
[19] Alfares, M.A., Elsharkawy, A.A.: Effects of axial preloading of angular contact ball bearings on the dynamics of a grinding machine spindle system. J. Mater. Process. Technol. 136, 48–59 (2003) · doi:10.1016/S0924-0136(02)00846-4
[20] Harris, T.A.: Rolling Bearing Analysis, 2nd edn. Wiley, New York (1984)
[21] Brewe, D.E., Hamrock, B.J.: Simplified solution for elliptical-contact deformation between two elastic solids. J. Lubr. Technol. 99, 485–487 (1977) · doi:10.1115/1.3453245
[22] Hamrock, B.J., Dowson, D.: Ball Bearing Lubrication–the Elastohydrodynamics of Elliptical Contacts. Wiley, New York (1981)
[23] Liu, Y.Z., Chen, L.Q.: Nonlinear Vibrations. Higher Education Press, Beijing (2001) (in Chinese)
[24] Frulla, G.: Rigid rotor dynamic stability using Floquet theory. Eur. J. Mech., A: Solids 19(1), 139–150 (2000) · Zbl 0966.74034 · doi:10.1016/S0997-7538(00)00151-0
[25] Qiu, Y., Zhang, J.H.: Cause of the vibration associated with ball bearings. Report 75-52-05-09/10, Department of Engineering Mechanics, Xi’an Jiaotong University (1990) (in Chinese)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.