×

Droplet hysteresis investigation on non-wetting striped textured surfaces: A lattice Boltzmann study. (English) Zbl 1395.76012

Summary: The Cassie-Baxter model is widely used to predict the apparent contact angles on textured super-hydrophobic surfaces. However, it has been challenged by some recent studies, since it does not consider contact angle hysteresis and surface structure characteristics near the contact line. The present study is to investigate the contact angle hysteresis on striped textured surfaces, and its elimination through vibrating the substrate. The two-phase flow is simulated by a recently proposed lattice Boltzmann model for high-density-ratio flows. Droplet evolutions under various initial contact angles are simulated, and it is found that different contact angles exist for the same textured surface. The importance of the contact line structure for droplet pinning is underlined via a study of droplet behavior on a composite substrate, with striped textured structure inside and flat structure outside. A “stick-jump” motion is found for the advancing contact line on the striped textured surface. Due to hysteresis, the contact angles after advancing are not consistent with the Cassie-Baxter model. The stable equilibrium is obtained through properly vibrating the substrate, and the resulted contact angles are consistent with Cassie’s predictions.

MSC:

76A20 Thin fluid films
76M28 Particle methods and lattice-gas methods
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Shibuichi, S.; Yamamoto, T.; Onda, T.; Tsujii, K., Super water- and oil-repellent surfaces resulting from fractal structure, J. Colloid Interface Sci., 208, 1, 287-294, (1998)
[2] Vinogradova, O. I.; Dubov, A. L., Superhydrophobic textures for microfluidics, Mendeleev Commun., 22, 5, 229-236, (2012)
[3] Gao, X. F.; Jiang, L., Water-repellent legs of water striders, Nature, 432, 7013, (2004), 36-36
[4] Zheng, Y. M.; Gao, X. F.; Jiang, L., Directional adhesion of superhydrophobic butterfly wings, Soft Matter, 3, 2, 178-182, (2007)
[5] Neinhuis, C.; Barthlott, W., Characterization and distribution of water-repellent, self-cleaning plant surfaces, Ann. Bot., 79, 6, 667-677, (1997)
[6] Londe, G.; Chunder, A.; Wesser, A.; Zhai, L.; Cho, H. J., Microfluidic valves based on superhydrophobic nanostructures and switchable thermosensitive surface for lab-on-a-chip (LOC) systems, Sensors Actuators B, 132, 2, 431-438, (2008)
[7] Oliveira, N. M.; Neto, A. I.; Song, W. L.; Mano, J. F., Two-dimensional open microfluidic devices by tuning the wettability on patterned superhydrophobic polymeric surface, Appl. Phys. Express, 3, 8, 5205-5207, (2010)
[8] Tropmann, A.; Tanguy, L.; Koltay, P.; Zengerle, R.; Riegger, L., Completely superhydrophobic PDMS surfaces for microfluidics, Langmuir, 28, 22, 8292-8295, (2012)
[9] Li, W. Z.; Wang, X.; Chen, Z. W.; Waje, M.; Yan, Y. S., Carbon nanotube film by filtration as cathode catalyst support for proton-exchange membrane fuel cell, Langmuir, 21, 21, 9386-9389, (2005)
[10] Moradi, N.; Varnik, F.; Steinbach, I., Contact angle dependence of the velocity of sliding cylindrical drop on flat substrates, Europhys. Lett. EPL, 95, 4, 44003-44008, (2011)
[11] Wenzel, R. N., Resistance of solid surfaces to wetting by water, Ind. Eng. Chem., 28, 988-994, (1936)
[12] Cassie, A. B.D.; Baxter, S., Wettability of porous surfaces, Trans. Faraday Soc., 40, 0546-0550, (1944)
[13] Choi, W.; Tuteja, A.; Mabry, J. M.; Cohen, R. E.; McKinley, G. H., A modified cassie-Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces, J. Colloid Interface Sci., 339, 1, 208-216, (2009)
[14] Zhao, H.; Park, K. C.; Law, K. Y., Effect of surface texturing on superoleophobicity, contact angle hysteresis, and “robustness”, Langmuir, 28, 42, 14925-14934, (2012)
[15] Gao, L. C.; McCarthy, T. J., How wenzel and cassie were wrong, Langmuir, 23, 7, 3762-3765, (2007)
[16] Extrand, C. W., A thermodynamic model for wetting free energies from contact angles, Langmuir, 19, 3, 646-649, (2003)
[17] Gao, L. C.; McCarthy, T. J., Reply to comment on how wenzel and cassie were wrong by Gao and McCarthy, Langmuir, 23, 26, (2007), 13243-13243
[18] Aidun, C. K.; Clausen, J. R., Lattice-Boltzmann method for complex flows, Annu. Rev. Fluid Mech., 42, 439-472, (2010) · Zbl 1345.76087
[19] Nourgaliev, R. R.; Dinh, T. N.; Theofanous, T. G.; Joseph, D., The lattice Boltzmann equation method: theoretical interpretation, numerics and implications, Int. J. Multiph. Flow, 29, 1, 117-169, (2003) · Zbl 1136.76594
[20] Chen, S.; Doolen, G. D., Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech., 30, 329-364, (1998) · Zbl 1398.76180
[21] Lai, H. L.; Ma, C. F., The lattice Boltzmann model for the second-order Benjamin-Ono equations, J. Stat. Mech. Theory Exp., 4, 1-14, (2010)
[22] Gunstensen, A. K.; Rothman, D. H.; Zaleski, S.; Zanetti, G., Lattice Boltzmann model of immiscible fluids, Phys. Rev. A, 43, 8, 4320-4327, (1991)
[23] Shan, X. W.; Chen, H. D., Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E, 47, 3, 1815-1819, (1993)
[24] Swift, M. R.; Orlandini, E.; Osborn, W. R.; Yeomans, J. M., Lattice Boltzmann simulations of liquid-gas and binary fluid systems, Phys. Rev. E, 54, 5, 5041-5052, (1996)
[25] He, X. Y.; Chen, S. Y.; Zhang, R. Y., A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability, J. Comput. Phys., 152, 2, 642-663, (1999) · Zbl 0954.76076
[26] Huang, J. J.; Shu, C.; Chew, Y. T., Lattice Boltzmann study of droplet motion inside a grooved channel, Phys. Fluids, 21, 2, 022103-022113, (2009) · Zbl 1183.76254
[27] Zhang, J. F.; Kwok, D. Y., Contact line and contact angle dynamics in superhydrophobic channels, Langmuir, 22, 11, 4998-5004, (2006)
[28] Moradi, N.; Varnik, F.; Steinbach, I., Roughness-gradient-induced spontaneous motion of droplets on hydrophobic surfaces: a lattice Boltzmann study, Europhys. Lett. EPL, 89, 2, 26006-26011, (2010)
[29] Semprebon, C.; Mistura, G.; Orlandini, E.; Bissacco, G.; Segato, A.; Yeomans, J. M., Anisotropy of water droplets on single rectangular posts, Langmuir, 25, 10, 5619-5625, (2009)
[30] Kusumaatmaja, H.; Vrancken, R. J.; Bastiaansen, C. W.M.; Yeomans, J. M., Anisotropic drop morphologies on corrugated surfaces, Langmuir, 24, 14, 7299-7308, (2008)
[31] Jansen, H. P.; Sotthewes, K.; van Swigchem, J.; Zandvliet, H. J.W.; Kooij, E. S., Lattice Boltzmann modeling of directional wetting: comparing simulations to experiments, Phys. Rev. E, 88, 013008-013017, (2013)
[32] Moradi, N.; Gross, M.; Varnik, F.; Zikos, G.; Steinbach, I., Morphologies of small droplets on patterned hydrophobic substrates, Modelling Simul. Mater. Sci. Eng., 19, 4, 045005-045017, (2011)
[33] Kim, Y. H.; Choi, W.; Lee, J. S., Water droplet properties on periodically structured superhydrophobic surfaces: a lattice Boltzmann approach to multiphase flows with high water/air density ratio, Microfluid. Nanofluid., 10, 1, 173-185, (2011)
[34] Gross, M.; Varnik, F.; Raabe, D.; Steinbach, I., Small droplets on superhydrophobic substrates, Phys. Rev. E, 81, 5, 051606-051619, (2010)
[35] Lee, T.; Liu, L., Lattice Boltzmann simulations of micron-scale drop impact on dry surfaces, J. Comput. Phys., 229, 20, 8045-8062, (2010) · Zbl 1426.76603
[36] Zheng, R. Y.; Sun, J. J.; Liu, H. H., A modeling approach to droplet contact-line motion dynamics in high-density-ratio two-phase flow, Comput. & Fluids, 73, 175-186, (2013) · Zbl 1365.76271
[37] Liu, H. H.; Valocchi, A. J.; Kang, Q. J.; Werth, C., Pore-scale simulations of gas displacing liquid in a homogeneous pore network using the lattice Boltzmann method, Transp. Porous Media, 99, 555-580, (2013)
[38] Cahn, J. W.; Hilliard, J. E., Free energy of a nonuniform system. 1. interfacial free energy, J. Chem. Phys., 28, 2, 258-267, (1958) · Zbl 1431.35066
[39] Ladd, A. J.C., Numerical simulations of particulate suspensions via a discretized Boltzmann-equation. 1. theoretical foundation, J. Fluid Mech., 271, 285-309, (1994) · Zbl 0815.76085
[40] Chang, Q. M.; Alexander, J. I.D., Analysis of single droplet dynamics on striped surface domains using a lattice Boltzmann method, Microfluid. Nanofluid., 2, 4, 309-326, (2006)
[41] de Gennes, P. G., Wetting—statics and dynamics, Rev. Modern Phys., 57, 3, 827-863, (1985)
[42] Johnson, R. E.; Dettre, R. H., Contact angle hysteresis. 3. study of an idealized heterogeneous surface, J. Phys. Chem., 68, 7, 1744-1750, (1964)
[43] Reyssat, M.; Pardo, F.; Quere, D., Drops onto gradients of texture, Europhys. Lett. EPL, 87, 3, 36003-36007, (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.