×

Radical formula and prime submodules. (English) Zbl 1117.13005

The envelope \(E(B)\) of a submodule \(B\subset M\) of a module \(M\) over a commutative ring \(R\) is a module version of the radical of an ideal. This paper introduces the \(n\)th envelope \(E_n(B) = E(\langle E_{n-1}(B)\rangle), E_0(B)=B\). It is shown that if \(R\) is an arithmetical ring of finite Krull dimension \(n\), then \(\langle E_n(B)\rangle = \text{rad}(B)\).

MSC:

13A10 Radical theory on commutative rings (MSC2000)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Azizi, A., Intersection of prime submodules and dimension of modules, Acta Math. Sci. Ser. B Engl. Ed., 25, 3, 385-394 (2005) · Zbl 1158.13307
[2] Azizi, A., Prime submodules and flat modules, Acta Math. Sin. (Engl. Ser.), 23, 1 (2007) · Zbl 1110.13007
[3] Azizi, A., Weak multiplication modules, Czechoslovak Math. J., 53, 128, 529-534 (2003) · Zbl 1083.13502
[4] Azizi, A.; Sharif, H., On prime submodules, Honam Math. J., 21, 1, 1-12 (1999) · Zbl 0979.13009
[5] George, A. M.; McCasland, R. L.; Smith, P. F., A principal ideal theorem analogue for modules over commutative rings, Comm. Algebra, 22, 2083-2099 (1994) · Zbl 0795.13001
[6] Jenkins, J.; Smith, P. F., On the prime radical of a module over a commutative ring, Comm. Algebra, 20, 12, 3593-3602 (1992) · Zbl 0776.13003
[7] Jensen, C., Arithmetical rings, Acta Math. Hungar., 17, 115-123 (1966) · Zbl 0141.03502
[8] Larsen, M. D.; McCarthy, P. J., Multiplicative Theory of Ideals (1971), Academic Press: Academic Press New York · Zbl 0237.13002
[9] Lu, C. P., Prime submodules of modules, Comment. Math. Univ. St. Paul, 33, 1, 61-69 (1984) · Zbl 0575.13005
[10] Lu, C. P., Spectra of modules, Comm. Algebra, 23, 10, 3741-3752 (1995) · Zbl 0853.13011
[11] McCasland, R. L.; Moore, M. E., On radical of submodules, Comm. Algebra, 19, 5, 1327-1341 (1991) · Zbl 0745.13001
[12] McCasland, R. L.; Moore, M. E., Prime submodules, Comm. Algebra, 20, 6, 1803-1817 (1992) · Zbl 0776.13007
[13] Leung, K. H.; Man, S. H., On commutative Noetherian rings which satisfy the radical formula, Glasgow Math. J., 39, 285-293 (1997) · Zbl 0921.13001
[14] Man, S. H., One-dimensional domain which satisfy the radical formula are Dedekind domains, Arch. Math., 66, 276-279 (1996) · Zbl 0854.13010
[15] Matsumura, H., Commutative Ring Theory (1992), Cambridge Univ. Press: Cambridge Univ. Press Cambridge
[16] Sharifi, Y.; Sharif, H.; Namazi, S., Rings satisfying the radical formula, Acta Math. Hungar., 71, 103-108 (1996) · Zbl 0890.13001
[17] Smith, P. F., Primary modules over commutative rings, Glasgow Math. J., 43, 103-111 (2001) · Zbl 0979.13003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.