zbMATH — the first resource for mathematics

Determination of the 3D border by repeated elimination of internal surfaces. (English) Zbl 0529.68063

68T10 Pattern recognition, speech recognition
Full Text: DOI
[1] Abel, D. J., Smith, J. L.: A data structure and algorithm based on a linear key for a rectangle retrieval problem. Comptr. Graph. Image Proc.24, 1–13 (1983). · doi:10.1016/0734-189X(83)90017-8
[2] Artzy, E., Frieder, G., Herman, G. T.: The theory, design, implementation and evaluation of a three-dimensional surface detection algorithm. Comptr. Graph. Image Proc.15, 1–24 (1981). · doi:10.1016/0146-664X(81)90103-9
[3] Dyer, C. R., Rosenfeld, A., Samet, H.: Region representation: boundary codes from quadtrees. Comm. ACM23, 171–179 (1980). · Zbl 0429.68075 · doi:10.1145/358826.358838
[4] Elcock, E. W.: Recursive triangulation. (Submitted.)
[5] Gargantini, I., Tabakman, Z.: Linear quad- and oct-trees: their use in generating simple algorithms for image processing. Proc. Graphics Interface ’82, NCGA, Toronto, 123–127 (1982).
[6] Gargantini, I.: An effective way of storing quadtrees. Comm. ACM25, 905–910 (1982). · Zbl 0504.68057 · doi:10.1145/358728.358741
[7] Gargantini, I.: Linear octtrees for fast processing of three-dimensional objects. Comptr. Graph. Image Proc.20, 365–374 (1982). · doi:10.1016/0146-664X(82)90058-2
[8] Gargantini, I.: Translation, rotation and superposition of linear quadtrees. Int. J. Man-Machine Studies18, 253–263 (1983). · Zbl 0507.68059 · doi:10.1016/S0020-7373(83)80009-1
[9] Gargantini, I., Tabakman, Z.: Separation of connected components using linear quad- and octtrees. Proc. Twelfth Conf. Num. Math. Comptr. 32, University of Manitoba, Winnipeg, Manitoba, Congressus Numeratium, Vol. 37, 257–276 (1983). · Zbl 0542.68073
[10] Gargantini, I.: The use of linear quadtrees in a numerical problem. SIAM J. Num. Anal.20, 1161–1169 (1983). · Zbl 0532.65007 · doi:10.1137/0720086
[11] Gargantini, I., Atkinson, H. H.: Linear quadtrees: a blocking technique for contour filling. Pattern Recognition (to appear). · Zbl 0537.68095
[12] Gargantini, I., Lam, G.: An approximation to the 3D border. Proc. Soc. Photo. Inst. Eng. SPIE. Geneva (1983), 98–103 (1983).
[13] Gargantini, I.: Triangulation of images. (Submitted.) · Zbl 0182.21402
[14] Jackins, C. L., Tanimoto, S. L.: Octtrees and their use in representing three-dimensional objects. Comptr. Graph. Image Proc.14, 249–270 (1980). · doi:10.1016/0146-664X(80)90055-6
[15] Kawaguchi, E., Endo, T.: A method for binary picture representation and its approximation to data compression. IEEE Trans. Pattern Anal. Mach. Intell.PAMI-2, 27–35 (1980). · Zbl 0436.68062 · doi:10.1109/TPAMI.1980.4766967
[16] Liu, H. K.: Two and three dimensional boundary detection. Comptr. Graph. Image Proc.6, 123–134 (1977). · doi:10.1016/S0146-664X(77)80008-7
[17] Oliver, M. A., Wiseman, N. E.: Operations on quadtree encoded images. Comptr. J.26, 82–91 (1983). · Zbl 0523.68056
[18] Pavlidis, T.: Algorithms for graphics and image processing. Computer Press 1982. · Zbl 0482.68086
[19] Rosenfeld, A., Kak, A. C.: Digital picture processing, Vols. 1 and 2, 2nd ed. New York: Academic Press 1982. · Zbl 0564.94002
[20] Srihari, S. N.: Representation of three-dimensional images. ACM Computer Survey1981, 399–424.
[21] Udupa, K., Srihari, S. N., Herman, G. T.: Boundary detection in multidimensions. IEEE Trans. Pattern Anal. Mach. Intell.PAMI-4, 41–50 (1982). · doi:10.1109/TPAMI.1982.4767193
[22] Woodwark, J. R.: The explicit quad tree as a structure for Computer Graphics. Comptr. J.25, 235–238 (1982). · doi:10.1093/comjnl/25.2.235
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.