×

Curvilinear virtual elements for contact mechanics. (English) Zbl 1506.74382

Summary: The virtual element method (VEM) for curved edges with applications to contact mechanics is outlined within this work. VEM allows the use of non-matching meshes at interfaces with the advantage that these can be mapped to a simple node-to-node contact formulation. To account for exact approximation of complex geometries at interfaces, we developed a VEM technology for contact that considers curved edges. A number of numerical examples illustrate the robustness and accuracy of this discretization technique. The results are very promising and underline the advantages of the new VEM formulation for contact between two elastic bodies in the presence of curved interfaces.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74B05 Classical linear elasticity
74M15 Contact in solid mechanics

Software:

Nike2D
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Wriggers, P., Computational Contact Mechanics (2006), Springer: Springer Berlin, Heidelberg, New York · Zbl 1104.74002
[2] Laursen, T. A., Computational Contact and Impact Mechanics (2002), Springer: Springer Berlin, New York, Heidelberg · Zbl 0996.74003
[3] Hallquist, J. O., NIKE2d: An Implicit, Finite-Deformation, Finite Element Code for Analysing the Static and Dynamic Response of Two-Dimensional SolidsTech. Rep. UCRL-52678 (1979), University of California, Lawrence Livermore National Laboratory
[4] Wriggers, P.; Simo, J., A note on tangent stiffnesses for fully nonlinear contact problems, Commun. Appl. Numer. Methods, 1, 199-203 (1985) · Zbl 0582.73110
[5] Hallquist, J. O.; Goudreau, G. L.; Benson, D. J., Sliding interfaces with contact-impact in large-scale Lagrange computations, Comput. Methods Appl. Mech. Engrg., 51, 107-137 (1985) · Zbl 0567.73120
[6] Pietrzak, G.; Curnier, A., Continuum mechanics modeling and augmented Lagrange formulation of multibody, large deformation frictional contact problems, (Owen, D. R.; Hinton, E.; Onate, E., Proceedings of COMPLAS 5 (1997), CIMNE: CIMNE Barcelona), 878-883
[7] Padmanabhan, V.; Laursen, T., A framework for development of surface smoothing procedures in large deformation frictional contact analysis, Finite Elem. Anal. Des., 37, 173-198 (2001) · Zbl 0998.74053
[8] Wriggers, P.; Krstulovic-Opara, L.; Korelc, J., Smooth \(C^1\)- interpolations for two-dimensional frictional contact problems, Internat. J. Numer. Methods Engrg., 51, 1469-1495 (2001) · Zbl 1065.74621
[9] Krstulovic-Opara, L.; Wriggers, P.; Korelc, J., A \(C^1\)-continuous formulation for 3D finite deformation frictional contact, Comput. Mech., 29, 27-42 (2002) · Zbl 1076.74555
[10] Temizer, I.; Wriggers, P.; Hughes, T. J.R., Contact treatment in isogeometric analysis with nurbs, Comput. Methods Appl. Mech. Engrg., 200, 1100-1112 (2011) · Zbl 1225.74126
[11] de Lorenzis, L.; Wriggers, P.; Zavarise, G., Isogeometric analysis of 3D large deformation contact problems with the augmented Lagrangian formulation, Comput. Mech., 49, 1-20 (2012) · Zbl 1356.74146
[12] de Lorenzis, L.; Temizer, I.; Wriggers, P.; Zavarise, G., A large deformation frictional contact formulation using NURBS-based isogeometric analysis, Internat. J. Numer. Methods Engrg., 87, 1278-1300 (2011) · Zbl 1242.74104
[13] Temizer, I.; Wriggers, P.; Hughes, T. J.R., Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with nurbs, Comput. Methods Appl. Mech. Engrg., 209-211, 115-128 (2012) · Zbl 1243.74130
[14] Popp, A.; Gee, M. W.; Wall, W. A., A finite deformation mortar contact formulation using a primal-dual active set strategy, Internat. J. Numer. Methods Engrg., 79, 11, 1354-1391 (2009) · Zbl 1176.74133
[15] Laursen, T. A.; Puso, M. A.; Sanders, J., Mortar contact formulations for deformable-deformable contact: past contributions and new extensions for enriched and embedded interface formulations, Comput. Methods Appl. Mech. Engrg., 205, 3-15 (2012) · Zbl 1239.74070
[16] Wohlmuth, B.; Krause, R., Monotone methods on non-matching grids for non linear contact problems, SISC, 25, 324-347 (2004) · Zbl 1163.65334
[17] Fischer, K. A.; Wriggers, P., Frictionless 2D contact formulations for finite deformations based on the mortar method, Comput. Mech., 36, 226-244 (2005) · Zbl 1102.74033
[18] Fischer, K. A.; Wriggers, P., Mortar based frictional contact formulation for higher order interpolations using the moving friction cone, Comput. Methods Appl. Mech. Engrg., 195, 5020-5036 (2006) · Zbl 1118.74047
[19] Tur, M.; Fuenmayor, F.; Wriggers, P., A mortar-based frictional contact formulation for large deformations using Lagrange multipliers, Comput. Methods Appl. Mech. Engrg., 198, 2860-2873 (2009) · Zbl 1229.74141
[20] Noii, N.; Aldakheel, F.; Wick, T.; Wriggers, P., An adaptive global-local approach for phase-field modeling of anisotropic brittle fracture, Comput. Methods Appl. Mech. Engrg., 361, Article 112744 pp. (2020) · Zbl 1442.74213
[21] Aldakheel, F.; Noii, N.; Wick, T.; Wriggers, P., A global-local approach for hydraulic phase-field fracture in poroelastic media, Comput. Math. Appl. (2020)
[22] Beirão da Veiga, L.; Brezzi, F.; Cangiani, A.; Manzini, G.; Marini, L. D.; Russo, A., Basic principles of virtual element methods, Math. Models Methods Appl. Sci., 23, 1, 199-214 (2013) · Zbl 1416.65433
[23] Beirão da Veiga, L.; Brezzi, F.; Marini, L. D.; Russo, A., The hitchhiker’s guide to the virtual element method, Math. Models Methods Appl. Sci., 24, 08, 1541-1573 (2014) · Zbl 1291.65336
[24] Wriggers, P.; Aldakheel, F.; Hudobivnik, B., Application of the Virtual Element Method in Mechanics, 4-10 (2019), GAMM-Rundbriefe
[25] Beirão da Veiga, L.; Brezzi, F.; Marini, L. D., Virtual elements for linear elasticity problems, SIAM J. Numer. Anal., 51, 2, 794-812 (2013) · Zbl 1268.74010
[26] Gain, A. L.; Talischi, C.; Paulino, G. H., On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes, Comput. Methods Appl. Mech. Engrg., 282, 132-160 (2014) · Zbl 1423.74095
[27] Artioli, E.; Beirão da Veiga, L.; Lovadina, C.; Sacco, E., Arbitrary order 2D virtual elements for polygonal meshes: Part I, elastic problem, Comput. Mech., 60, 3, 355-377 (2017) · Zbl 1386.74132
[28] Artioli, E.; de Miranda, S.; Lovadina, C.; Patruno, L., A stress/displacement virtual element method for plane elasticity problems, Comput. Methods Appl. Mech. Engrg., 325, 155-174 (2017) · Zbl 1439.74040
[29] Wriggers, P.; Rust, W. T.; Reddy, B. D., A virtual element method for contact, Comput. Mech., 58, 6, 1039-1050 (2016) · Zbl 1398.74420
[30] Wriggers, P.; Rust, W. T., A virtual element method for frictional contact including large deformations, Eng. Comput., 36, 7, 2133-2161 (2019)
[31] Hudobivnik, B.; Aldakheel, F.; Wriggers, P., A low order 3D virtual element formulation for finite elasto-plastic deformations, Comput. Mech., 63, 2, 253-269 (2019) · Zbl 1468.74085
[32] Aldakheel, F.; Hudobivnik, B.; Wriggers., P., Virtual elements for finite thermo-plasticity problems, Comput. Mech., 64, 5, 1347-1360 (2019) · Zbl 1464.74382
[33] Artioli, E.; Beirao da Veiga, L.; Lovadina, C.; Sacco, E., Arbitrary order 2D virtual elements for polygonal meshes: Part II, inelastic problem, Comput. Mech., 60, 643-657 (2017) · Zbl 1386.74133
[34] Wriggers, P.; Hudobivnik, B.; Schröder, J., Finite and Virtual Element Formulations for Large Strain Anisotropic Material with Inextensive Fibers, 205-231 (2018), Springer International Publishing: Springer International Publishing Cham
[35] Reddy, B. D.; van Huyssteen, D., A virtual element method for transversely isotropic elasticity, Comput. Mech. (2019) · Zbl 1462.74159
[36] Artioli, E.; Beirão da Veiga, L.; Dassi, F., Curvilinear virtual elements for 2D solid mechanics applications, Comput. Methods Appl. Mech. Engrg., 359, Article 112667 pp. (2020) · Zbl 1441.74229
[37] Chi, H.; Beirão da Veiga, L.; Paulino, G., Some basic formulations of the virtual element method (VEM) for finite deformations, Comput. Methods Appl. Mech. Engrg., 318, 148-192 (2017) · Zbl 1439.74397
[38] Wriggers, P.; Reddy, B.; Rust, W.; Hudobivnik, B., Efficient virtual element formulations for compressible and incompressible finite deformations, Comput. Mech., 60, 253-268 (2017) · Zbl 1386.74146
[39] Hussein, A.; Aldakheel, F.; Hudobivnik, B.; Wriggers, P.; Guidault, P.-A.; Allix, O., A computational framework for brittle crack-propagation based on efficient virtual element method, Finite Elem. Anal. Des., 159, 15-32 (2019)
[40] Aldakheel, F.; Hudobivnik, B.; Hussein, A.; Wriggers, P., Phase-field modeling of brittle fracture using an efficient virtual element scheme, Comput. Methods Appl. Mech. Engrg., 341, 443-466 (2018) · Zbl 1440.74352
[41] Aldakheel, F.; Hudobivnik, B.; Wriggers, P., Virtual element formulation for phase-field modeling of ductile fracture, Int. J. Multiscale Comput. Eng., 17, 2, 181-200 (2019)
[42] Artioli, E.; Marfia, S.; Sacco, E., Vem-based tracking algorithm for cohesive/frictional 2D fracture, Comput. Methods Appl. Mech. Engrg., 365, Article 112956 pp. (2020) · Zbl 1442.74198
[43] Aldakheel, F., A microscale model for concrete failure in poro-elasto-plastic media, Theor. Appl. Fract. Mech., 107, Article 102517 pp. (2020)
[44] Gain, A.; Paulino, G.; Leonardo, S.; Menezes, I., Topology optimization using polytopes, Comput. Methods Appl. Mech. Engrg., 293, 411-430 (2015) · Zbl 1423.74745
[45] Park, K.; Chi, H.; Paulino, G. H., On nonconvex meshes for elastodynamics using virtual element methods with explicit time integration, Comput. Methods Appl. Mech. Engrg., 356, 669-684 (2019) · Zbl 1441.74269
[46] Park, K.; Chi, H.; Paulino, G. H., Numerical recipes for elastodynamic virtual element methods with explicit time integration, Internat. J. Numer. Methods Engrg., 121, 1, 1-31 (2020)
[47] Cihan, M.; Aldakheel, F.; Hudobivnik, B.; Wriggers, P., Virtual element formulation for finite strain elastodynamics (2020), arXiv preprint arXiv:2002.02680
[48] Artioli, E., Asymptotic homogenization of fibre-reinforced composites: a virtual element method approach, Meccanica, 53, 1187-1201 (2018) · Zbl 1390.74174
[49] Wriggers, P.; Hudobivnik, B.; Aldakheel, F., A virtual element formulation for general element shapes, Comput. Mech. (2020) · Zbl 1466.74052
[50] Beirão da Veiga, L.; Russo, A.; Vacca, G., The virtual element method with curved edges, ESAIM: M2AN, 53, 2, 375-404 (2019) · Zbl 1426.65163
[51] Artioli, E.; Beirão da Veiga, L.; Verani, M., An adaptive curved virtual element method for the statistical homogenization of random fibre-reinforced composites, Finite Elem. Anal. Des., 177, 103418 (2020)
[52] Lengiewicz, J.; Korelc, J.; Stupkiewicz, S., Automation of finite element formulations for large deformation contact problems, Internat. J. Numer. Methods Engrg., 85, 10, 1252-1279 (2011) · Zbl 1217.74125
[53] Beirão da Veiga, L.; Brezzi, F.; Marini, L. D.; Russo, A., Polynomial preserving virtual elements with curved edges, Math. Mod. and Meth. in Appl. Sci. (2020) · Zbl 1444.65066
[54] Wriggers, P.; Reddy, B.; Rust, W.; Hudobivnik, B., Efficient virtual element formulations for compressible and incompressible finite deformations, Comput. Mech., 60, 2, 253-268 (2017) · Zbl 1386.74146
[55] Sommariva, A.; Vianello, M., Gauss-Green cubature and moment computation over arbitrary geometries, J. Comput. Appl. Math., 231, 886-896 (2009) · Zbl 1170.65017
[56] Artioli, E.; Sommariva, A.; Vianello, M., Algebraic cubature on polygonal elements with a circular edge, Comput. Math. Appl., 79, 2057-2066 (2020) · Zbl 1454.65159
[57] Beirão da Veiga, L.; Dassi, F.; Russo, A., High-order virtual element method on polyhedral meshes, Comput. Math. Appl., 74, 5, 1110-1122 (2017) · Zbl 1448.65215
[58] Krysl, P., Mean-strain eight-node hexahedron with stabilization by energy sampling, Internat. J. Numer. Methods Engrg., 102, 3-4, 437-449 (2015) · Zbl 1352.74077
[59] Krysl, P., Mean-strain 8-node hexahedron with optimized energy-sampling stabilization, Finite Elem. Anal. Des., 108, 41-53 (2016)
[60] Johnson, K. L., Contact Mechanics (1985), Cambridge University Press · Zbl 0599.73108
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.