×

A review and study on Ritz method admissible functions with emphasis on buckling and free vibration of isotropic and anisotropic beams and plates. (English) Zbl 1397.74077

Summary: The first goal of this work is to present a literature review regarding the use of several sets of admissible functions in the Ritz method. The papers reviewed deal mainly with the analysis of buckling and free vibration of isotropic and anisotropic beams and plates. Theoretically, in order to obtain a correct solution, the set of admissible functions must not violate the essential or geometric boundary conditions and should also be linearly independent and complete. However, in practice, some of the sets of functions proposed in the literature present a bad numerical behavior, namely in terms of convergence, computational time and stability. Thus, a second goal of the present work is to compare the performance of several sets of functions in terms of these three features. To achieve this objective, the free vibration analysis of a fully clamped rectangular plate is carried out using six different sets of functions, along with the study of the convergence of natural frequencies and mode shapes, the computational time and the numerical stability.

MSC:

74G60 Bifurcation and buckling
74-02 Research exposition (monographs, survey articles) pertaining to mechanics of deformable solids
74S05 Finite element methods applied to problems in solid mechanics
74H45 Vibrations in dynamical problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74K20 Plates
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Afshari, M; Inman, DJ, Continuous crack modeling in piezoelectrically driven vibrations of an Euler-Bernoulli beam, J Vib Control, 19, 341-355, (2013) · doi:10.1177/1077546312437803
[2] Ansari, R; Rouhi, H, Analytical treatment of the free vibration of single-walled carbon nanotubes based on the nonlocal flugge shell theory, J Eng Mater Technol, 134, 011008, (2011) · doi:10.1115/1.4005347
[3] Ansari, R; Rouhi, H, Nonlocal flugge shell model for thermal buckling of multi-walled carbon nanotubes with layerwise boundary conditions, J Therm Stress, 35, 326-341, (2012) · doi:10.1080/01495739.2012.663683
[4] Ansari, R; Sahmani, S; Rouhi, H, Axial buckling analysis of single-walled carbon nanotubes in thermal environments via the Rayleigh-Ritz technique, Comput Mater Sci, 50, 3050-3055, (2011) · doi:10.1016/j.commatsci.2011.05.027
[5] Ansari, R; Sahmani, S; Rouhi, H, Rayleigh-Ritz axial buckling analysis of single-walled carbon nanotubes with different boundary conditions, Phys Lett A, 375, 1255-1263, (2011) · doi:10.1016/j.physleta.2011.01.046
[6] Aref, AJ; Alampalli, S; He, Y, Ritz-based static analysis method for fiber reinforced plastic rib core skew bridge superstructure, J Eng Mech-ASCE, 127, 450-458, (2001) · doi:10.1061/(ASCE)0733-9399(2001)
[7] Arshad, SH; Naeem, MN; Sultana, N; Iqbal, Z; Shah, AG, Effects of exponential volume fraction law on the natural frequencies of FGM cylindrical shells under various boundary conditions, Arch Appl Mech, 81, 999-1016, (2011) · Zbl 1271.74128 · doi:10.1007/s00419-010-0460-5
[8] Ashton, JE, Analysis of anisotropic plates II, J Compos Mater, 3, 470-479, (1969) · doi:10.1177/002199836900300311
[9] Ashton, JE, Natural modes of free-free anisotropic plates, Shock Vib Bull, 39, 93-99, (1969)
[10] Ashton, JE, Anisotropic plate analysis-boundary conditions, J Compos Mater, 4, 162-171, (1970) · doi:10.1177/002199837000400201
[11] Ashton, JE; Anderson, JD, The natural modes of vibration of boron-epoxy plates, Shock Vib Bull, 39, 81-91, (1969)
[12] Ashton, JE; Waddoups, ME, Analysis of anisotropic plates, J Compos Mater, 3, 148-165, (1969) · doi:10.1177/002199836900300111
[13] Askari, E; Daneshmand, F; Amabili, M, Coupled vibrations of a partially fluid-filled cylindrical container with an internal body including the effect of free surface waves, J Fluid Struct, 27, 1049-1067, (2011) · doi:10.1016/j.jfluidstructs.2011.04.010
[14] Bae, CH; Kwak, MK; Koo, JR, Free vibration analysis of a hanged clamped-free cylindrical shell partially submerged in fluid: the effect of external wall, internal shaft, and flat bottom, J Sound Vib, 331, 4072-4092, (2012) · doi:10.1016/j.jsv.2012.04.020
[15] Bambill, DV; Felix, DH; Rossit, CA, Natural frequencies of thin, rectangular plates with holes or orthotropic “patches” carrying an elastically mounted mass, Int J Solids Struct, 43, 4116-4135, (2006) · Zbl 1120.74523 · doi:10.1016/j.ijsolstr.2005.03.051
[16] Bassily, SF; Dickinson, SM, Buckling and lateral vibration of rectangular plates subject to inplane loads-A Ritz approach, J Sound Vib, 24, 219-239, (1972) · doi:10.1016/0022-460X(72)90951-0
[17] Bassily SF, Dickinson SM, (1973) Corrigendum: Buckling and lateral vibration of rectangular plates subject to inplane loads-A Ritz approach: (S. F. Bassily and S. M. Dickinson, (1972) J Sound Vib 24, 219-239). J Sound Vib 29(4):505-508. doi:10.1016/S0022-460X(73)80066-5
[18] Bassily, SF; Dickinson, SM, On the use of beam functions for problems of plates involving free edges, J Appl Mech, 42, 858-864, (1975) · Zbl 0326.73055 · doi:10.1115/1.3423720
[19] Bert, CW; Mayberry, BL, Free vibrations of unsymmetrically laminated anisotropic plates with clamped edges, J Compos Mater, 3, 282-293, (1969) · doi:10.1177/002199836900300207
[20] Berthelot, JM, Damping analysis of laminated beams and plates using the Ritz method, Compos Struct, 74, 186-201, (2006) · doi:10.1016/j.compstruct.2005.04.031
[21] Berthelot, JM; Sefrani, Y, Damping analysis of unidirectional Glass and kevlar fibre composites, Compos Sci Technol, 64, 1261-1278, (2004) · doi:10.1016/j.compscitech.2003.10.003
[22] Bhat, RB, Natural frequencies of rectangular plates using characteristic orthogonal polynomials in Rayleigh-Ritz method, J Sound Vib, 102, 493-499, (1985) · doi:10.1016/S0022-460X(85)80109-7
[23] Bhat, RB, Plate deflections using orthogonal polynomials, J Eng Mech-ASCE, 111, 1301-1309, (1985) · doi:10.1061/(ASCE)0733-9399(1985)
[24] Bhat, RB, Transverse vibrations of a rotating uniform cantilever beam with tip mass as predicted by using beam characteristic orthogonal polynomials in the Rayleigh-Ritz method, J Sound Vib, 105, 199-210, (1986) · doi:10.1016/0022-460X(86)90149-5
[25] Bhat, RB, Beam characteristic orthogonal polynomials with fractional power increments, J Sound Vib, 112, 556-558, (1987) · doi:10.1016/S0022-460X(87)80121-9
[26] Bhat, RB, Flexural vibration of polygonal plates using characteristic orthogonal polynomials in two variables, J Sound Vib, 114, 65-71, (1987) · doi:10.1016/S0022-460X(87)80234-1
[27] Bhat, RB, Rayleigh-Ritz method with separate deflection expressions for structural segments, J Sound Vib, 115, 174-177, (1987) · doi:10.1016/0022-460X(87)90500-1
[28] Bhat, RB; Laura, PAA; Gutierrez, RG; Cortinez, VH; Sanzi, HC, Numerical experiments on the determination of natural frequencies of transverse vibrations of rectangular plates of non-uniform thickness, J Sound Vib, 138, 205-219, (1990) · doi:10.1016/0022-460X(90)90538-B
[29] Blevins RD (1979) Formulas for natural frequency and mode shape. Van Nostrand Reinhold, New York
[30] Bose, T; Mohanty, AR, Detection and monitoring of side crack in a rectangular plate using mobility, J Vib Control, (2014) · doi:10.1177/1077546314534285
[31] Bose T, Mohanty AR (2015) Sound radiation response of a rectangular plate having a side crack of arbitrary length, orientation, and position. J Vib Acoust 137(2):021,019-021,019, doi:10.1115/1.4029449
[32] Chai, GB, Free vibration of rectangular isotropic plates with and without a concentrated mass, Comput Struct, 48, 529-533, (1993) · Zbl 0784.73050 · doi:10.1016/0045-7949(93)90331-7
[33] Chai, GB, Buckling of generally laminated composite plates with various edge support conditions, Compos Struct, 29, 299-310, (1994) · doi:10.1016/0263-8223(94)90026-4
[34] Chai, GB, Frequency analysis of a S-C-S-C plate carrying a concentrated mass, J Sound Vib, 179, 170-177, (1995) · doi:10.1006/jsvi.1995.0011
[35] Chai, GB, Frequency analysis of rectangular isotropic plates carrying a concentrated mass, Comput Struct, 56, 39-48, (1995) · doi:10.1016/0045-7949(94)00533-9
[36] Chai, GB; Khong, PW, The effect of varying the support conditions on the buckling of laminated composite plates, Compos Struct, 24, 99-106, (1993) · doi:10.1016/0263-8223(93)90031-K
[37] Chai, GB; Low, KH; Lim, TM, Tension effects on the natural frequencies of centre-loaded clamped beams, J Sound Vib, 181, 727-736, (1995) · doi:10.1006/jsvi.1995.0168
[38] Chakraverty, S; Bhat, RB; Stiharu, I, Recent research on vibration of structures using boundary characteristic orthogonal polynomials in the Rayleigh-Ritz method, Shock Vib Dig, 31, 187-194, (1999)
[39] Cheung, KY; Zhou, D, The free vibrations of tapered rectangular plates using a new set of beam functions with the Rayleigh-Ritz method, J Sound Vib, 223, 703-722, (1999) · doi:10.1006/jsvi.1998.2160
[40] Cheung, YK; Zhou, D, Eigenfrequencies of tapered rectangular plates with intermediate line supports, Int J Solids Struct, 36, 143-166, (1999) · Zbl 0955.74030 · doi:10.1016/S0020-7683(97)00272-2
[41] Cheung, YK; Zhou, D, The free vibrations of rectangular composite plates with point-supports using static beam functions, Compos Struct, 44, 145-154, (1999) · doi:10.1016/S0263-8223(98)00122-6
[42] Cheung, YK; Zhou, D, Vibrations of moderately thick rectangular plates in terms of a set of static Timoshenko beam functions, Comput Struct, 78, 757-768, (2000) · doi:10.1016/S0045-7949(00)00058-4
[43] Cheung, YK; Zhou, D, Vibrations of rectangular plates with elastic intermediate line-supports and edge constraints, Thin Wall Struct, 37, 305-331, (2000) · doi:10.1016/S0263-8231(00)00015-X
[44] Cheung, YK; Zhou, D, Free vibrations of rectangular unsymmetrically laminated composite plates with internal line supports, Comput Struct, 79, 1923-1932, (2001) · doi:10.1016/S0045-7949(01)00096-7
[45] Cheung, YK; Zhou, D, Vibration analysis of symmetrically laminated rectangular plates with intermediate line supports, Comput Struct, 79, 33-41, (2001) · doi:10.1016/S0045-7949(00)00108-5
[46] Cheung, YK; Zhou, D, Vibration of tapered Mindlin plates in terms of static Timoshenko beam functions, J Sound Vib, 260, 693-709, (2003) · doi:10.1016/S0022-460X(02)01008-8
[47] Chiba, M; Sugimoto, T, Vibration characteristics of a cantilever plate with attached spring-mass system, J Sound Vib, 260, 237-263, (2003) · doi:10.1016/S0022-460X(02)00921-5
[48] Ciancio, PM; Rossit, CA; Laura, PAA, Approximate study of the free vibrations of a cantilever anisotropic plate carrying a concentrated mass, J Sound Vib, 302, 621-628, (2007) · doi:10.1016/j.jsv.2006.11.027
[49] Courant, R, Variational methods for the solution of problems of equilibrium and vibrations, Bull Am Math Soc, 49, 1-23, (1943) · Zbl 0063.00985 · doi:10.1090/S0002-9904-1943-07818-4
[50] Cupial, P, Calculation of the natural frequencies of composite plates by the Rayleigh-Ritz method with orthogonal polynomials, J Sound Vib, 201, 385-387, (1997) · doi:10.1006/jsvi.1996.0802
[51] Dasgupta, A; Huang, KH, A layer-wise analysis for free vibrations of thick composite spherical panels, J Compos Mater, 31, 658-671, (1997) · doi:10.1177/002199839703100702
[52] Deobald, LR; Gibson, RF, Determination of elastic constants of orthotropic plates by a modal analysis/Rayleigh-Ritz technique, J Sound Vib, 124, 269-283, (1988) · doi:10.1016/S0022-460X(88)80187-1
[53] Dickinson, SM, The buckling and frequency of flexural vibration of rectangular isotropic and orthotropic plates using rayleigh’s method, J Sound Vib, 61, 1-8, (1978) · Zbl 0388.73060 · doi:10.1016/0022-460X(78)90036-6
[54] Dickinson, SM; Blasio, A, On the use of orthogonal polynomials in the Rayleigh-Ritz method for the study of the flexural vibration and buckling of isotropic and orthotropic rectangular plates, J Sound Vib, 108, 51-62, (1986) · Zbl 1235.74041 · doi:10.1016/S0022-460X(86)80310-8
[55] Dickinson, SM; Li, EKH, On the use of simply supported plate functions in the Rayleigh-Ritz method applied to the flexural vibration of rectangular plates, J Sound Vib, 80, 292-297, (1982) · doi:10.1016/0022-460X(82)90199-7
[56] Dowell, EH, On asymptotic approximations to beam model shapes, J Appl Mech, 51, 439, (1984) · doi:10.1115/1.3167639
[57] Eringen, AC, On differential equations of nonlocal elasticity and solutions of screw dislocations and surface waves, J Appl Phys, 54, 4703-4710, (1983) · doi:10.1063/1.332803
[58] Eringen, AC; Edelen, DGB, On nonlocal elasticity, Int J Eng Sci, 10, 233-248, (1972) · Zbl 0247.73005
[59] Fasana, A; Marchesiello, S, Rayleigh-Ritz analysis of sandwich beams, J Sound Vib, 241, 643-652, (2001) · doi:10.1006/jsvi.2000.3311
[60] Felgar RP (1950) Formulas for integrals containing characteristic functions of a vibrating beam. Tech. rep., University of Texas. Bureau of Engineering Research. Circular
[61] Frederiksen, PS, Single-layer plate theories applied to the flexural vibration of completely free thick laminates, J Sound Vib, 186, 743-759, (1995) · Zbl 1049.74598 · doi:10.1006/jsvi.1995.0486
[62] Gallego, A; Moreno-García, P; Casanova, CF, Modal analysis of delaminated composite plates using the finite element method and damage detection via combined Ritz/2D-wavelet analysis, J Sound Vib, 332, 2971-2983, (2013) · doi:10.1016/j.jsv.2013.01.012
[63] Gander, M; Kwok, F, Chladni figures and the tacoma bridge: motivating PDE eigenvalue problems via vibrating plates, SIAM Rev, 54, 573-596, (2012) · Zbl 1251.65155 · doi:10.1137/10081931X
[64] Gander, M; Wanner, G, From Euler, Ritz, and Galerkin to modern computing, SIAM Rev, 54, 627-666, (2012) · Zbl 1263.01013 · doi:10.1137/100804036
[65] Ganesan, N; Engels, RC, Hierarchical Bernoulli-Euler beam finite elements, Comput Struct, 43, 297-304, (1992) · Zbl 0766.73061 · doi:10.1016/0045-7949(92)90146-Q
[66] Gartner, JR; Cobb, EC, Natural frequencies and biplanar response of generalized rotating spindle systems, Robot Cim-Int Manuf, 4, 165-174, (1988) · doi:10.1016/0736-5845(88)90073-7
[67] Gartner, JR; Olgac, N, Improved numerical computation of uniform beam characteristic values and characteristic functions, J Sound Vib, 84, 481-489, (1982) · doi:10.1016/S0022-460X(82)80029-1
[68] Gaul L (2014) From Newton’s principia via Lord Rayleigh’s theory of sound to finite elements. In: Stein E (ed) The history of theoretical, material and computational mechanics - mathematics meets mechanics and engineering. Lecture notes in applied mathematics and mechanics, vol 1. Springer, Berlin, pp 385-398. doi:10.1007/978-3-642-39905-3_21
[69] Grossi, RO; Bhat, RB, Natural frequencies of edge restrained tapered rectangular plates, J Sound Vib, 185, 335-343, (1995) · Zbl 1049.74601 · doi:10.1006/jsvi.1995.0382
[70] Hearmon, RFS, The frequency of flexural vibration of rectangular orthotropic plates with clamped or supported edges, J Appl Mech, 26, 537-540, (1959) · Zbl 0092.18301
[71] Hosseini-Hashemi, S; Karimi, M; Rokni, DH, Hydroelastic vibration and buckling of rectangular Mindlin plates on Pasternak foundations under linearly varying in-plane loads, Soil Dyn Earthq Eng, 30, 1487-1499, (2010) · doi:10.1016/j.soildyn.2010.06.019
[72] Hosseini-Hashemi, S; Karimi, M; Taher, HRD, Vibration analysis of rectangular Mindlin plates on elastic foundations and vertically in contact with stationary fluid by the Ritz method, Ocean Eng, 37, 174-185, (2010) · doi:10.1016/j.oceaneng.2009.12.001
[73] Hu, XX; Sakiyama, T; Lim, CW; Xiong, Y; Matsuda, H; Morita, C, Vibration of angle-ply laminated plates with twist by Rayleigh-Ritz procedure, Comput Method Appl M, 193, 805-823, (2004) · Zbl 1051.74018 · doi:10.1016/j.cma.2003.08.003
[74] Huang, CS; Leissa, AW, Vibration analysis of rectangular plates with side cracks via the Ritz method, J Sound Vib, 323, 974-988, (2009) · doi:10.1016/j.jsv.2009.01.018
[75] Huang, CS; Leissa, AW; Chan, CW, Vibrations of rectangular plates with internal cracks or slits, Int J Mech Sci, 53, 436-445, (2011) · doi:10.1016/j.ijmecsci.2011.03.006
[76] Huang, CS; Leissa, AW; Li, RS, Accurate vibration analysis of thick, cracked rectangular plates, J Sound Vib, 330, 2079-2093, (2011) · doi:10.1016/j.jsv.2010.11.007
[77] Huang, CS; McGee, OG; Chang, MJ, Vibrations of cracked rectangular FGM thick plates, Compos Struct, 93, 1747-1764, (2011) · doi:10.1016/j.compstruct.2011.01.005
[78] Huang, CS; Yang, PJ; Chang, MJ, Three-dimensional vibration analyses of functionally graded material rectangular plates with through internal cracks, Compos Struct, 94, 2764-2776, (2012) · doi:10.1016/j.compstruct.2012.04.003
[79] Huang, CS; McGee, OG; Wang, KP, Three-dimensional vibrations of cracked rectangular parallelepipeds of functionally graded material, Int J Mech Sci, 70, 1-25, (2013) · doi:10.1016/j.ijmecsci.2012.05.009
[80] Hulzen, JR; Schitter, G; Hof, PMJV; Eijk, J, Dynamics, load balancing, and modal control of piezoelectric tube actuators, Mechatron, 22, 282-294, (2012) · doi:10.1016/j.mechatronics.2011.10.003
[81] Ilanko, S, Comments on “the historical bases of the Rayleigh and Ritz methods”, J Sound Vib, 319, 731-733, (2009) · doi:10.1016/j.jsv.2008.06.001
[82] Ip, KH; Tse, PC; Lai, TC, Material characterization for orthotropic shells using modal analysis and Rayleigh-Ritz models, Compos Part B, 29, 397-409, (1998) · doi:10.1016/S1359-8368(97)00037-1
[83] Isvandzibaei, MR; Jamaluddin, H; Raja Hamzah, R, Frequency analysis of multiple layered cylindrical shells under lateral pressure with asymmetric boundary conditions, Chinese J Mech Eng, 27, 23-31, (2014) · doi:10.3901/CJME.2014.01.023
[84] Jeong, KH; Kang, HS, Free vibration of multiple rectangular plates coupled with a liquid, Int J Mech Sci, 74, 161-172, (2013) · doi:10.1016/j.ijmecsci.2013.05.011
[85] Kato, Y; Honma, T, The Rayleigh-Ritz solution to estimate vibration characteristics of building floors, J Sound Vib, 211, 195-206, (1998) · doi:10.1006/jsvi.1997.1362
[86] Kim, CS; Young, PG; Dickinson, SM, On the flexural vibration of rectangular plates approached by using simple polynomials in the Rayleigh-Ritz method, J Sound Vib, 143, 379-394, (1990) · doi:10.1016/0022-460X(90)90730-N
[87] Kim, YW, Temperature dependent vibration analysis of functionally graded rectangular plates, J Sound Vib, 284, 531-549, (2005) · doi:10.1016/j.jsv.2004.06.043
[88] Kollar, LP; Veres, IA, Buckling of rectangular orthotropic plates subjected to biaxial normal forces, J Compos Mater, 35, 625-635, (2001) · doi:10.1177/002199801772662109
[89] Kong, S, Size effect on pull-in behavior of electrostatically actuated microbeams based on a modified couple stress theory, Appl Math Model, 37, 7481-7488, (2013) · Zbl 1438.74100 · doi:10.1016/j.apm.2013.02.024
[90] Kwak, MK; Koo, JR; Bae, CH, Free vibration analysis of a hung clamped-free cylindrical shell partially submerged in fluid, J Fluid Struct, 27, 283-296, (2011) · doi:10.1016/j.jfluidstructs.2010.11.005
[91] Lai, TC; Ip, KH, Parameter estimation of orthotropic plates by Bayesian sensitivity analysis, Compos Struct, 34, 29-42, (1996) · doi:10.1016/0263-8223(95)00128-X
[92] Lam, KY; Amrutharaj, G, Natural frequencies of rectangular stepped plates using polynomial beam functions with subsectioning, Appl Acoust, 44, 325-340, (1995) · doi:10.1016/0003-682X(94)00030-Y
[93] Lam, KY; Chun, L, Analysis of clamped laminated plates subjected to conventional blast, Compos Struct, 29, 311-321, (1994) · doi:10.1016/0263-8223(94)90027-2
[94] Lam, KY; Hung, KC, Vibration study on plates with stiffened openings using orthogonal polynomials and partitioning method, Comput Struct, 37, 295-301, (1990) · doi:10.1016/0045-7949(90)90321-R
[95] Lam, KY; Loy, CT, Effects of boundary conditions on frequencies of a multi-layered cylindrical shell, J Sound Vib, 188, 363-384, (1995) · doi:10.1006/jsvi.1995.0599
[96] Lam, KY; Hung, KC; Chow, ST, Vibration analysis of plates with cutouts by the modified Rayleigh-Ritz method, Appl Acoust, 28, 49-60, (1989) · doi:10.1016/0003-682X(89)90030-3
[97] Lee, D-C; Wang, C-S; Lee, L-T, The natural frequency of elastic plates with void by Ritz-method, Stud in Math Sci, 2, 36-50, (2011) · doi:10.3968/j.sms.1923845220120201.009
[98] Lee, LT; Lee, DC, Free vibration of rectangular plates on elastic point supports with the application of a new type of admissible function, Comput Struct, 65, 149-156, (1997) · Zbl 0918.73035 · doi:10.1016/S0045-7949(96)00426-9
[99] Leissa, AW, The free vibration of rectangular plates, J Sound Vib, 31, 257-293, (1973) · Zbl 0268.73033 · doi:10.1016/S0022-460X(73)80371-2
[100] Leissa, AW, The historical bases of the Rayleigh and Ritz methods, J Sound Vib, 287, 961-978, (2005) · doi:10.1016/j.jsv.2004.12.021
[101] Leissa, AW; Shihada, SM, Convergence of the Ritz method, Appl Mech Rev, 48, s90-s95, (1995) · doi:10.1115/1.3005088
[102] Leung, AYT, Integration of beam functions, Comput Struct, 29, 1087-1094, (1988) · Zbl 0666.73023 · doi:10.1016/0045-7949(88)90332-X
[103] Leung, AYT, Recurrent integration of beam functions, Comput Struct, 37, 277-282, (1990) · doi:10.1016/0045-7949(90)90319-W
[104] Liew, KM; Hung, KC; Lim, MK, Method of domain decomposition in vibrations of mixed edge anisotropic plates, Int J Solids Struct, 30, 3281-3301, (1993) · Zbl 0819.73076 · doi:10.1016/0020-7683(93)90114-M
[105] Liew, KM; Hung, KC; Lim, MK, Roles of domain decomposition method in plate vibrations: treatment of mixed discontinuous periphery boundaries, Int J Mech Sci, 35, 615-632, (1993) · Zbl 0800.73528 · doi:10.1016/0020-7403(93)90005-F
[106] Liew, KM; Hung, KC; Lim, MK, On the use of the domain decomposition method for vibration of symmetric laminates having discontinuities at the same edge, J Sound Vib, 178, 243-264, (1994) · doi:10.1006/jsvi.1994.1481
[107] Liew, KM; Hung, KC; Lim, MK, Vibration of Mindlin plates using boundary characteristic orthogonal polynomials, J Sound Vib, 182, 77-90, (1995) · doi:10.1006/jsvi.1995.0183
[108] Lim, SP; Senthilnathan, NR; Lee, KH, Rayleigh-Ritz vibration analysis of thick plates by a simple higher order theory, J Sound Vib, 130, 163-166, (1989) · Zbl 1235.74223 · doi:10.1016/0022-460X(89)90527-0
[109] Rayleigh, L, XXIV. on the calculation of chladni’s figures for a square plate, Philos Mag, 22, 225-229, (1911) · JFM 42.0896.01 · doi:10.1080/14786440808637121
[110] Low, KH; Chai, GB; Ng, CK, Experimental and analytical study of the frequencies of an S-C-S-C plate carrying a concentrated mass, J Vib Acoust, 115, 391-396, (1993) · doi:10.1115/1.2930362
[111] Low, KH; Lim, TM; Chai, GB, Experimental and analytical investigations of vibration frequencies for centre-loaded beams, Comput Struct, 48, 1157-1162, (1993) · doi:10.1016/0045-7949(93)90448-M
[112] Low, KH; Chai, GB; Tan, GS, A comparative study of vibrating loaded plates between the Rayleigh-Ritz and experimental methods, J Sound Vib, 199, 285-297, (1997) · doi:10.1006/jsvi.1996.0633
[113] Low, KH; Chai, GB; Lim, TM; Sue, SC, Comparisons of experimental and theoretical frequencies for rectangular plates with various boundary conditions and added masses, Int J Mech Sci, 40, 1119-1131, (1998) · Zbl 0939.74540 · doi:10.1016/S0020-7403(98)00013-7
[114] Loy, CT; Lam, KY, Vibration of cylindrical shells with ring support, Int J Mech Sci, 39, 455-471, (1997) · Zbl 0891.73042 · doi:10.1016/S0020-7403(96)00035-5
[115] Maheri, MR; Adams, RD, Modal vibration damping of anisotropic FRP laminates using the Rayleigh-Ritz energy minimization scheme, J Sound Vib, 259, 17-29, (2003) · doi:10.1006/jsvi.2002.5151
[116] Meleshko, VV, Bending of an elastic rectangular clamped plate: exact versus ‘engineering’ solutions, J Elast, 48, 1-50, (1997) · Zbl 0902.73047 · doi:10.1023/A:1007472709175
[117] Messina, A; Soldatos, KP, Ritz-type dynamic analysis of cross-ply laminated circular cylinders subjected to different boundary conditions, J Sound Vib, 227, 749-768, (1999) · Zbl 1235.74337 · doi:10.1006/jsvi.1999.2347
[118] Morales, CA; Ramírez, JF, Further simplest-expression integrals involving beam eigenfunctions and derivatives, J Sound Vib, 253, 518-522, (2002) · doi:10.1006/jsvi.2001.4011
[119] Moreno-García P (2012) Simulación y ensayos de vibraciones en placas de material compuesto de fibra de carbono y detección de daño mediante la respuesta en frecuencia y la transformada wavelet. PhD thesis, Universidad de Granada, Spain. http://hdl.handle.net/10481/23283 (in Spanish)
[120] Moreno-García, P; Castro, E; Romo-Melo, L; Gallego, A; Roldán, A, Vibration tests in CFRP plates for damage detection via non-parametric signal analysis, Shock Vib, 19, 857-865, (2012) · doi:10.1155/2012/385835
[121] Moreno-García P, Lopes H, Araújo dos Santos JV, Maia NMM (2012b) Damage localisation in composite laminated plates using higher order spatial derivatives. In: Topping B (ed) Proceedings of the eleventh international conference on computational structures technology. Civil-Comp Press, Stirlingshire, UK. doi:10.4203/ccp.99.75
[122] Moreno-García, P; Araújo dos Santos, JV; Lopes, H, A new technique to optimize the use of mode shape derivatives to localize damage in laminated composite plates, Compos Struct, 108, 548-554, (2014) · doi:10.1016/j.compstruct.2013.09.050
[123] Moreno-García P, Lopes H, Araújo dos Santos JV (2015) Application of higher order finite differences to damage localization in laminated composite plates. Compos Struct. doi:10.1016/j.compstruct.2015.08.011
[124] Muthukumaran, P; Bhat, R; Stiharu, I, Boundary conditioning technique for structural tuning, J Sound Vib, 220, 847-859, (1999) · doi:10.1006/jsvi.1998.1991
[125] Muthukumaran, P; Demirli, K; Stiharu, I; Bhat, R, Boundary conditioning for structural tuning using fuzzy logic approach, Comput Struct, 74, 547-557, (2000) · doi:10.1016/S0045-7949(99)00063-2
[126] Nallim, LG; Grossi, RO, On the use of orthogonal polynomials in the study of anisotropic plates, J Sound Vib, 264, 1201-1207, (2003) · doi:10.1016/S0022-460X(02)01523-7
[127] Nallim, LG; Oller, S, An analytical-numerical approach to simulate the dynamic behaviour of arbitrarily laminated composite plates, Compos Struct, 85, 311-325, (2008) · doi:10.1016/j.compstruct.2007.10.031
[128] Nallim, LG; Martinez, SO; Grossi, RO, Statical and dynamical behaviour of thin fibre reinforced composite laminates with different shapes, Comput Method Appl Mech Eng, 194, 1797-1822, (2005) · Zbl 1092.74024 · doi:10.1016/j.cma.2004.06.009
[129] Oosterhout, G; Hoogt, P; Spiering, R, Accurate calculation methods for natural frequencies of plates with special attention to the higher modes, J Sound Vib, 183, 33-47, (1995) · Zbl 0973.74565 · doi:10.1006/jsvi.1995.0237
[130] Pandey, MD; Sherbourne, AN, Buckling of anisotropic composite plates under stress gradient, J Eng Mech-ASCE, 117, 260-275, (1991) · doi:10.1061/(ASCE)0733-9399(1991)
[131] Pandey, MD; Sherbourne, AN, Stability analysis of inhomogeneous, fibrous composite plates, Int J Solids Struct, 30, 37-60, (1993) · Zbl 0816.73024 · doi:10.1016/0020-7683(93)90131-P
[132] Pao, YC; Peterson, KA, Contour-plot simulation of vibrational and buckling mode shapes of composite plates, J Compos Mater, 22, 935-954, (1988) · doi:10.1177/002199838802201003
[133] Parashar, SK; Kumar, A, Three-dimensional analytical modeling of vibration behavior of piezoceramic cylindrical shells, Arch Appl Mech, 85, 641-656, (2015) · doi:10.1007/s00419-014-0977-0
[134] Pirnat, M; Cepon, G; Boltezar, M, Structural-acoustic model of a rectangular plate-cavity system with an attached distributed mass and internal sound source: theory and experiment, J Sound Vib, 333, 2003-2018, (2014) · doi:10.1016/j.jsv.2013.11.044
[135] Plunkett, R, Natural frequencies of uniform and non-uniform rectangular cantilever plates, J Mech Eng Sci, 5, 146-156, (1963) · doi:10.1243/JMES_JOUR_1963_005_020_02
[136] Rango, RF; Bellomo, FJ; Nallim, LG, A variational Ritz formulation for vibration analysis of thick quadrilateral laminated plates, Int J Mech Sci, 104, 60-74, (2015) · doi:10.1016/j.ijmecsci.2015.09.018
[137] Reddy, JN, A simple higher-order theory for laminated composite plates, J Appl Mech, 51, 745-752, (1984) · Zbl 0549.73062 · doi:10.1115/1.3167719
[138] Rinaldi, G; Packirisamy, M; Stiharu, I, Boundary characterization of microstructures through thermo-mechanical testing, J Micromech Microeng, 16, 549, (2006) · doi:10.1088/0960-1317/16/3/010
[139] Rinaldi, G; Packirisamy, M; Stiharu, I, Quantitative boundary support characterization for cantilever MEMS, Sensors, 7, 2062-2079, (2007) · doi:10.3390/s7102062
[140] Rinaldi, G; Packirisamy, M; Stiharu, I, Boundary characterization of MEMS structures through electro-mechanical testing, Sensor Actuat A-Phys, 143, 415-422, (2008) · doi:10.1016/j.sna.2007.08.032
[141] Ritz, W, Theorie der transversalschwingungen einer quadratische platte mit freien rändern, Ann Phys-Leipzig, 333, 737-786, (1909) · JFM 40.0881.02 · doi:10.1002/andp.19093330403
[142] Ritz, W, Über eine neue methode zur lösung gewisser variationsprobleme der mathematischen physik, J Reine Angew Math, 135, 1-61, (1909) · JFM 39.0449.01 · doi:10.1515/crll.1909.135.1
[143] Rouhi, H; Bazdid-Vahdati, M; Ansari, R, Rayleigh-Ritz vibrational analysis of multiwalled carbon nanotubes based on the nonlocal flugge shell theory, J Compos, 2015, 11, (2015) · doi:10.1155/2015/750392
[144] Santos, JVA; Reddy, JN, Free vibration and buckling analysis of beams with a modified couple-stress theory, Int J Appl Mech, 4, 1250,026, (2012) · doi:10.1142/S1758825112500263
[145] Savoye, P, On the benefits of exposing mathematics majors to the Rayleigh-Ritz procedure, PRIMUS, 21, 554-566, (2011) · doi:10.1080/10511970903474455
[146] Sharma, CB, Calculation of integrals involving characteristic beam functions, J Sound Vib, 56, 475-480, (1978) · Zbl 0371.73048 · doi:10.1016/0022-460X(78)90289-4
[147] Smith, ST; Bradford, MA; Oehlers, DJ, Numerical convergence of simple and orthogonal polynomials for the unilateral plate buckling problem using the Rayleigh-Ritz method, Int J Numer Meth Eng, 44, 1685-1707, (1999) · Zbl 0932.74079
[148] Soldatos, KP; Messina, A, Vibration studies of cross-ply laminated shear deformable circular cylinders on the basis of orthogonal polynomials, J Sound Vib, 218, 219-243, (1998) · Zbl 1236.74290 · doi:10.1006/jsvi.1998.1769
[149] Soldatos, KP; Messina, A, The influence of boundary conditions and transverse shear on the vibration of angle-ply laminated plates, circular cylinders and cylindrical panels, Comput Method Appl Mech Eng, 190, 2385-2409, (2001) · Zbl 0992.74039 · doi:10.1016/S0045-7825(00)00242-5
[150] Song, X; Han, Q; Zhai, J, Vibration analyses of symmetrically laminated composite cylindrical shells with arbitrary boundaries conditions via Rayleigh-Ritz method, Compos Struct, 134, 820-830, (2015) · doi:10.1016/j.compstruct.2015.08.134
[151] Song, X; Zhai, J; Chen, Y; Han, Q, Traveling wave analysis of rotating cross-ply laminated cylindrical shells with arbitrary boundaries conditions via Rayleigh-Ritz method, Compos Struct, 133, 1101-1115, (2015) · doi:10.1016/j.compstruct.2015.08.015
[152] Sun, S; Cao, D; Han, Q, Vibration studies of rotating cylindrical shells with arbitrary edges using characteristic orthogonal polynomials in the Rayleigh-Ritz method, Int J Mech Sci, 68, 180-189, (2013) · doi:10.1016/j.ijmecsci.2013.01.013
[153] Timoshenko S (1937) Vibration problems in engineering, 2nd edn. D. Van Nostrand Company Inc, New York · JFM 63.1305.03
[154] Timoshenko S, Woinowsky-Krieger S (1959) Theory of plates and shells. McGraw-Hill, Auckland · Zbl 0114.40801
[155] Warburton, GB, The vibration of rectangular plates, P I Mech Eng, 168, 371-384, (1954) · doi:10.1243/PIME_PROC_1954_168_040_02
[156] Warburton, GB; Edney, SL, Vibrations of rectangular plates with elastically restrained edges, J Sound Vib, 95, 537-552, (1984) · Zbl 0552.73048 · doi:10.1016/0022-460X(84)90236-0
[157] Williamson, F, Richard Courant and the finite element method: a further look, Hist Math, 7, 369-378, (1980) · Zbl 0489.65002 · doi:10.1016/0315-0860(80)90001-4
[158] Yang, F; Chong, ACM; Lam, DCC; Tong, P, Couple stress based strain gradient theory for elasticity, Int J Solids Struct, 39, 2731-2743, (2002) · Zbl 1037.74006 · doi:10.1016/S0020-7683(02)00152-X
[159] Yoon, H; Youn, BD; Kim, HS, Kirchhoff plate theory-based electromechanically-coupled analytical model considering inertia and stiffness effects of a surface-bonded piezoelectric patch, Smart Mater Struct, 25, 025,017, (2016) · doi:10.1088/0964-1726/25/2/025017
[160] Young, D, Vibration of rectangular plates by the Ritz method, J Appl Mech, 17, 448-453, (1950) · Zbl 0039.20701
[161] Young D, Felgar RP (1949) Tables of characteristic functions representing normal modes of vibration of a beam. Tech. rep., Engineering Research Series, No.44, University of Texas, Austin, Texas. http://hdl.handle.net/2152/6001
[162] Young, PG, Application of a three-dimensional shell theory to the free vibration of shells arbitrarily deep in one direction, J Sound Vib, 238, 257-269, (2000) · doi:10.1006/jsvi.2000.3103
[163] Young, PG; Dickinson, SM, On the free flexural vibration of rectangular plates with straight or curved internal line supports, J Sound Vib, 162, 123-135, (1993) · Zbl 0925.73355 · doi:10.1006/jsvi.1993.1106
[164] Zhou, D, The application of a type of new admissible function to the vibration of rectangular plates, Comput Struct, 52, 199-203, (1994) · Zbl 0874.73074 · doi:10.1016/0045-7949(94)90272-0
[165] Zhou, D, Natural frequencies of elastically restrained rectangular plates using a set of static beam functions in the Rayleigh-Ritz method, Comput Struct, 57, 731-735, (1995) · Zbl 0900.73359 · doi:10.1016/0045-7949(95)00066-P
[166] Zhou, D, Natural frequencies of rectangular plates using a set of static beam functions in Rayleigh-Ritz method, J Sound Vib, 189, 81-87, (1996) · Zbl 1232.74123 · doi:10.1006/jsvi.1996.0006
[167] Zhou, D, Vibrations of Mindlin rectangular plates with elastically restrained edges using static Timoshenko beam functions with the Rayleigh-Ritz method, Int J Solids Struct, 38, 5565-5580, (2001) · Zbl 1043.74024 · doi:10.1016/S0020-7683(00)00384-X
[168] Zhou, D, Vibrations of point-supported rectangular plates with variable thickness using a set of static tapered beam functions, Int J Mech Sci, 44, 149-164, (2002) · Zbl 1125.74340 · doi:10.1016/S0020-7403(01)00081-9
[169] Zhou, D; Cheung, YK, The free vibration of a type of tapered beams, Comput Method Appl M, 188, 203-216, (2000) · Zbl 0979.74029 · doi:10.1016/S0045-7825(99)00148-6
[170] Zhou, D; Cheung, YK, Vibrations of tapered Timoshenko beams in terms of static Timoshenko beam functions, J Appl Mech, 68, 596-602, (2000) · Zbl 1110.74801 · doi:10.1115/1.1357164
[171] Zhou, D; Lo, SH; Au, FTK; Cheung, YK, Vibration analysis of rectangular Mindlin plates with internal line supports using static Timoshenko beam functions, Int J Mech Sci, 44, 2503-2522, (2002) · Zbl 1113.74353 · doi:10.1016/S0020-7403(02)00188-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.