zbMATH — the first resource for mathematics

Weyl quantization on compact Abelian groups and quantum mechanics of almost periodic systems. (English. Russian original) Zbl 0471.43008
Theor. Math. Phys. 48, 597-604 (1982); translation from Teor. Mat. Fiz. 48, 49-59 (1981).
43A99 Abstract harmonic analysis
81S99 General quantum mechanics and problems of quantization
Full Text: DOI
[1] J. M. Ziman, Principles of the Theory of Solids, C. U. P., Cambridge (1964). · Zbl 0121.44801
[2] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. 1, Springer, Berlin (1963). · Zbl 0115.10603
[3] F. A. Berezin, ?Quantization,? Izv. Akad. Nauk SSSR Ser. Mat.,38, 1116 (1974).
[4] M. A. Shubin, ?Almost periodic functions and differential operators with partial derivatives,? Usp. Mat. Nauk,33, 3 (1979). · Zbl 0448.47032
[5] M. A. Shubin, ?Spectral theory and the index of elliptic operators with almost periodic coefficients,? Usp. Mat. Nauk,34, 95 (1979). · Zbl 0448.47032
[6] I. A. Shereshevski, Lett. Math. Phys. (in print).
[7] Y. Y. Slawianowski, ?Abelian groups and the Weyl approach to kinematics. Nonlocal function-algebras,? Rep. Math. Phys.,5, 259 (1974). · Zbl 0306.43007 · doi:10.1016/0034-4877(74)90037-8
[8] V. V. Zhikov and B. M. Levitan, Almost Periodic Functions and Differential Equations [in Russian], MGU, Moscow (1978). · Zbl 0414.43008
[9] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer, ?Deformation theory and quantization,? Ann. Phys. (N. Y.),111, 61 (1979). · Zbl 0377.53024 · doi:10.1016/0003-4916(78)90224-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.