×

Single and biphoton imaging and high dimensional quantum communication. (English) Zbl 1250.81024

Summary: Here, we present recent developments in the field of quantum imaging focusing on the high dimensionality aspects of single and biphoton imaging. We discuss some systems that have a “quantum advantage” over classical counterparts. We highlight some recent experiments in single-photon image discrimination, large alphabet quantum key distribution and image buffering.

MSC:

81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81V80 Quantum optics
68U10 Computing methodologies for image processing
81P40 Quantum coherence, entanglement, quantum correlations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bennett C.H., Brassard G.: Experimental quantum cryptography: the dawn of a new era for quantum cryptography: the experimental prototype is working. SIGACT News 20(4), 78–80 (1989) · doi:10.1145/74074.74087
[2] Ekert A.K.: Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991) · Zbl 0990.94509 · doi:10.1103/PhysRevLett.67.661
[3] Shor P.W., Preskill J.: Simple proof of security of the bb84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000) · doi:10.1103/PhysRevLett.85.441
[4] Shor, P.W.: In: Proceedings of the 35th Annual Symposium on the Foundations of Computer Science, Los Alamitos, CA. IEEE Computer Society Press, New York (1994)
[5] Deutsch D.: Quantum Computational Networks. Proc. Roy. Soc. Lond. Math. Phys. Sci. 425(1868), 73–90 (1989) · Zbl 0691.68054 · doi:10.1098/rspa.1989.0099
[6] Cirac J.I., Zoller P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74(20), 4091–4094 (1995) · doi:10.1103/PhysRevLett.74.4091
[7] Grover L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325–328 (1997) · doi:10.1103/PhysRevLett.79.325
[8] Monroe C., Meekhof D.M., King B.E., Itano W.M., Wineland D.J.: Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75(25), 4714–4717 (1995) · Zbl 1020.81550 · doi:10.1103/PhysRevLett.75.4714
[9] Kolobov M.: The spatial behavior of nonclassical light. Rev. Mod. Phys. 71, 1539 (1999) · doi:10.1103/RevModPhys.71.1539
[10] Pierce E.C.P.J.R., Rodemich E.R.: The capacity of the photon counting channel. IEEE Trans. Inf. Theory 27, 61 (1981) · Zbl 0455.94014 · doi:10.1109/TIT.1981.1056296
[11] Shannon C.E.: The mathematical theory of communication. Bell Syst. Tech. J. 27, 379 (1948) · Zbl 1154.94303 · doi:10.1002/j.1538-7305.1948.tb01338.x
[12] Mair A., Vaziri A., Weihs G., Zeilinger A.: Entanglement of the orbital angular momentum states of photons. Nature 412, 313 (2001) · doi:10.1038/35085529
[13] Molina-Terriza G., Torres J.P., Torner L.: Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum. Phys. Rev. Lett. 88, 013601 (2001) · doi:10.1103/PhysRevLett.88.013601
[14] Leach J., Courtial J., Skeldon K., Barnett S.M., Franke-Arnold S., Padgett M.J.: Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon. Phys. Rev. Lett. 92, 013601 (2004) · doi:10.1103/PhysRevLett.92.013601
[15] de Riedmatten H., Marcikic I., Scarani V., Tittel W., Zbinden H., Gisin N.: Tailoring photonic entanglement in high-dimensional hilbert spaces. Phys. Rev. A 69, 050304(R) (2004) · Zbl 1058.81084
[16] Barreiro J.T., Langford N.K., Peters N.A., Kwiat P.G.: Generation of hyperentangled photon pairs. Phys. Rev. Lett. 95, 260501 (2005) · doi:10.1103/PhysRevLett.95.260501
[17] Walborn S.P., Lemelle D.S., Almeida M.P., SoutoRibeiro P.H.: Quantum key distribution with higher-order alphabets using spatially encoded qudits. Phys. Rev. Lett. 96, 090501 (2006) · doi:10.1103/PhysRevLett.96.090501
[18] Walther P., Aspelmeyer M., Zeilinger A.: Heralded generation of multiphoton entanglement. Phys. Rev. A 75, 012313 (2007) · doi:10.1103/PhysRevA.75.012313
[19] O’Sullivan-Hale M.N., Khan I.A., Boyd R.W., Howell J.C.: Pixel entanglement: experimental realization of optically entangled d=3 and d=6 qudits. Phys. Rev. Lett. 94, 220501 (2005) · doi:10.1103/PhysRevLett.94.220501
[20] Ali-Khan I., Broadbent C.J., Howell J.C.: Large-alphabet quantum key distribution using energy-time entangled bipartite states. Phys. Rev. Lett. 98, 060503 (2007) · doi:10.1103/PhysRevLett.98.060503
[21] Turin G.L.: An introduction to matched filters: IRE Trans. Inf. Theory 6, 311 (1960) · doi:10.1109/TIT.1960.1057571
[22] Goodman J.: Introduction to Fourier Optics, 3rd edn. Roberts and Company, Greenwood Village, CO (2005)
[23] Lugt A.V.: Signal detection by complex spatial filtering. IEEE Trans. Inf. Theory 10(2), 139 (1964) · Zbl 0116.35306 · doi:10.1109/TIT.1964.1053650
[24] Horner, J.L., Gianino, P.D.: Phase-only matched filtering. Appl. Opt. 23(6), 812–816 (1984). http://ao.osa.org/abstract.cfm?URI=ao-23-6-812
[25] Broadbent C.J., Zerom P., Shin H., Howell J.C., Boyd R.W.: Discriminating orthogonal single-photon images. Phys. Rev. A. 79(3), 033802 (2009) · doi:10.1103/PhysRevA.79.033802
[26] Malik M., Shin H., O’Sullivan M., Zerom P., Boyd R.W.: Quantum ghost image identification with correlated photon pairs. Phys. Rev. Lett. 104(16), 163602 (2010) · doi:10.1103/PhysRevLett.104.163602
[27] Camacho R.M., Broadbent C.J., Ali-Khan I., Howell J.C.: All-optical delay of images using slow light. Phys. Rev. Lett. 98, 043902 (2007) · doi:10.1103/PhysRevLett.98.043902
[28] Vander Lugt A.: Coherent optical processing. Proc. IEEE 62, 1300 (1974) · doi:10.1109/PROC.1974.9624
[29] Morris G.M., George N.: Frequency-plane filtering with an achromatic optical transform. Opt. Lett. 5, 202 (1980) · doi:10.1364/OL.5.000202
[30] An X., Psaltis D., Burr G.W.: Thermal fixing of 10,000 holograms in linbo3:fe. Appl. Opt. 38(2), 386–393 (1999) · doi:10.1364/AO.38.000386
[31] Morris G.M.: Image correlation at low light levels: a computer simulation. Appl. Opt. 23(18), 3152 (1984) · doi:10.1364/AO.23.003152
[32] Peres A., Terno D.R.: Optimal distinction between non-orthogonal quantum states. J. Phys. A 31(34), 7105 (1998) · Zbl 0937.81017 · doi:10.1088/0305-4470/31/34/013
[33] Li X., Voss P.L., Chen J., Sharping J.E., Kumar P.: Storage and long-distance distribution of telecommunications-band polarization entanglement generated in an optical fiber. Opt. Lett. 30, 1201 (2005) · doi:10.1364/OL.30.001201
[34] Neves L., Lima G., Gómez J.G.A., Monken C.H., Saavedra C., Pádua S.: Generation of entangled states of qudits using twin photons. Phys. Rev. Lett. 94, 100501 (2005) · doi:10.1103/PhysRevLett.94.100501
[35] Barreiro J.T., Langford N.K., Peters N.A., Kwiat P.G.: Generation of hyperentangled photon pairs. Phys. Rev. Lett. 95, 260501 (2005) · doi:10.1103/PhysRevLett.95.260501
[36] Cerf N.J., Bourennane M., Karlsson A., Gisin N.: Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88, 127902 (2002) · Zbl 1046.81008 · doi:10.1103/PhysRevLett.88.127902
[37] Nikolopoulos G.M., Ranade K.S., Alber G.: Error tolerance of two-basis quantum-key-distribution protocols using qudits and two-way classical communication. Phys. Rev. A 73, 32325 (2006) · doi:10.1103/PhysRevA.73.032325
[38] Grice W.P., Walmsley I. A.: Spectral information and distinguishability in type-ii down-conversion with a broadband pump. Phys. Rev. A 56, 1627 (1997) · doi:10.1103/PhysRevA.56.1627
[39] Ali-Khan I., Howell J.C.: Experimental demonstration of high two-photon time-energy entanglement. Phys. Rev. A 73, 031801(R) (2006)
[40] Law C.K., Eberly J.H.: Analysis and interpretation of high transverse entanglement in optical paramet ric down conversion. Phys. Rev. Lett. 92, 127903 (2004) · doi:10.1103/PhysRevLett.92.127903
[41] Pryde G.J., OBrien J.L., White A.G., Ralph T.C., Wiseman H.M.: Measurement of quantum weak values of photon polarization. Phys. Rev. Lett. 94, 220405 (2005) · doi:10.1103/PhysRevLett.94.220405
[42] Franson J.D.: Bell inequality for position and time. Phys. Rev. Lett. 62, 2205 (1989) · doi:10.1103/PhysRevLett.62.2205
[43] Tittel W., Brendel J., Zbinden H., Gisin N.: Violation of bell inequalities by photons more than 10 km apart. Phys. Rev. Lett. 81, 3563 (1998) · doi:10.1103/PhysRevLett.81.3563
[44] Marcikic I., de Riedmatten H., Tittel W., Zbinden H., Legre M., Gisin N.: Distribution of time-bin entangled qubits over 50 km of optical fiber. Phys. Rev. Lett. 93, 180502 (2004) · Zbl 1068.81527 · doi:10.1103/PhysRevLett.93.180502
[45] Boyd, R.W., Gauthier, D.J.: In: Wolf, E. (eds.) Progress in Optics, vol. 43. Elsevier, Amsterdam, p. 497 (2002)
[46] Chiao R., Milonni P.: Fast light, slow light. Opt. Photonics News 13, 26 (2002) · doi:10.1364/OPN.13.6.000026
[47] Camacho R.M., Pack M.V., Howell J.C.: Low-distortion slow light using two absorption resonances. Phys. Rev. A 73, 063812 (2006) · doi:10.1103/PhysRevA.73.063812
[48] Kasapi A., Jain M., Yin G.Y., Harris S.E.: Electromagnetically induced transparency: propagation dynamics. Phys. Rev. Lett. 74, 2447 (1995) · doi:10.1103/PhysRevLett.74.2447
[49] Jain M., Merriam A.J., Kasapi A., Yin G.Y., Harris S.E.: Elimination of optical self-focusing by population trapping. Phys. Rev. Lett. 75(24), 4385–4388 (1995) · doi:10.1103/PhysRevLett.75.4385
[50] Kash M.M., Sautenkov V.A., Zibrov A.S., Hollberg L., Welch G.R., Lukin M.D., Rostovtsev Y., Fry E.S., Scully M.O.: Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas. Phys. Rev. Lett. 82(26), 5229–5232 (1999) · doi:10.1103/PhysRevLett.82.5229
[51] Budker D., Kimball D.F., Rochester S.M., Yashchuk V.V.: Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation. Phys. Rev. Lett. 83(9), 1767–1770 (1999) · doi:10.1103/PhysRevLett.83.1767
[52] Hau L.V., Harris S.E., Dutton Z., Behroozi C.H.: Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594 (1999) · doi:10.1038/17561
[53] Liu C., Dutton Z., Behroozi C.H., Hau L.V.: Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490 (2001) · doi:10.1038/35054017
[54] Turukhin A.V., Sudarshanam V.S., Shahriar M.S., Musser J.A., Ham B.S., Hemmer P.R.: Observation of ultraslow and stored light pulses in a solid. Phys. Rev. Lett. 88, 023602 (2002) · doi:10.1103/PhysRevLett.88.023602
[55] Bigelow M.S., Lepeshkin N.N., Boyd R.W.: Observation of ultraslow light propagation in a ruby crystal at room temperature. Phys. Rev. Lett. 90(11), 113903 (2003) · doi:10.1103/PhysRevLett.90.113903
[56] Zhao, X., Palinginis, P., Pesala, B., Chang-Hasnain, C., Hemmer, P.: Tunable ultraslow light in vertical-cavity surface-emitting laser amplifier. Opt. Express 13(20), 7899–7904 (2005). http://www.opticsexpress.org/abstract.cfm?URI=oe-13-20-7899
[57] Palinginis, P., Sedgwick, F., Crankshaw, S., Moewe, M., Chang-Hasnain, C.: Room temperature slow light in a quantum-well waveguide via coherent population oscillation. Opt. Express 13(24), 9909–9915 (2005). http://www.opticsexpress.org/abstract.cfm?URI=oe-13-24-9909
[58] Camacho R.M., Pack M.V., Howell J.C.: Slow light with large fractional delays by spectral hole-burning in rubidium vapor. Phys. Rev. A 74(3), 033801 (2006) · doi:10.1103/PhysRevA.74.033801
[59] Tanaka H., Niwa H., Hayami K., Furue S., Nakayama K., Kohmoto T., Kunitomo M., Fukuda Y.: Propagation of optical pulses in a resonantly absorbing medium: observation of negative velocity in rb vapor. Phys. Rev. A. 68(5), 053801 (2003) · doi:10.1103/PhysRevA.68.053801
[60] Macke B., Ségard B.: Pulse normalization in slow-light media. Phys. Rev. A 73(4), 043802 (2006) · doi:10.1103/PhysRevA.73.043802
[61] Zhu, Z., Gauthier, D.J.: Nearly transparent sbs slow light in an optical fiber. Opt. Express 14(16), 7238–7245 (2006). http://www.opticsexpress.org/abstract.cfm?URI=oe-14-16-7238
[62] Phillips D.F., Fleischauer A., Mair A., Walsworth R.L.: Storage of light in atomic vapor. Phys. Rev. Lett. 86, 783 (2001) · doi:10.1103/PhysRevLett.86.783
[63] Kocharovskaya O., Rostovtsev Y., Scully M.O.: Stopping light via hot atoms. Phys. Rev. Lett. 86(4), 628–631 (2001) · doi:10.1103/PhysRevLett.86.628
[64] Bajcsy M., Zibrov A.S., Lukin M.D.: Stationary pulses of light in an atomic medium. Nature. 426, 638 (2003) · doi:10.1038/nature02176
[65] Yanik M.F., Suh W., Wang Z., Fan S.: Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency. Phys. Rev. Lett. 93(23), 233903 (2004) · doi:10.1103/PhysRevLett.93.233903
[66] Anisimov P.M., Lum D.J., McCracken S.B., Lee H., Dowling J.P.: An invisible quantum tripwire. New J. Phys. 12, 083012 (2010) · doi:10.1088/1367-2630/12/8/083012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.