×

zbMATH — the first resource for mathematics

Improved results on fuzzy \(H^\infty\) filter design for T-S fuzzy systems. (English) Zbl 1205.93040
Summary: The fuzzy \(H^\infty \) filter design problem for T-S fuzzy systems with interval time-varying delay is investigated. The delay is considered as the time-varying delay being either differentiable uniformly bounded with delay derivative in bounded interval or fast varying (with no restrictions on the delay derivative). A novel Lyapunov-Krasovskii functional is employed and a tighter upper bound of its derivative is obtained. The resulting criterion thus has advantages over the existing ones since we estimate the upper bound of the derivative of Lyapunov-Krasovskii functional without ignoring some useful terms. A fuzzy \(H^\infty \) filter is designed to ensure that the filter error system is asymptotically stable and has a prescribed \(H^\infty \) performance level. An improved delay-derivative-dependent condition for the existence of such a filter is derived in the form of linear matrix inequalities (LMIs). Finally, numerical examples are given to show the effectiveness of the proposed method.

MSC:
93B36 \(H^\infty\)-control
93E11 Filtering in stochastic control theory
93C42 Fuzzy control/observation systems
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] D. S. Bernstein and W. M. Haddad, “Steady-state Kalman filtering with an H\infty error bound,” Systems & Control Letters, vol. 12, no. 1, pp. 9-16, 1989. · Zbl 0684.93081 · doi:10.1016/0167-6911(89)90089-3
[2] D. Simon, “Kalman filtering for fuzzy discrete time dynamic systems,” Applied Soft Computing Journal, vol. 3, no. 3, pp. 197-207, 2003. · Zbl 05391439 · doi:10.1016/S1568-4946(03)00034-6
[3] Fuwen Yang, Z. Wang, and Y. S. Hung, “Robust Kalman filtering for discrete time-varying uncertain systems with multiplicative noises,” IEEE Transactions on Automatic Control, vol. 47, no. 7, pp. 1179-1183, 2002. · Zbl 1364.93817 · doi:10.1109/TAC.2002.800668
[4] C. Lin, Q.-G. Wang, T. H. Lee, and B. Chen, “H\infty filter design for nonlinear systems with time-delay through T-S fuzzy model approach,” IEEE Transactions on Fuzzy Systems, vol. 16, no. 3, pp. 739-746, 2008. · Zbl 05516393 · doi:10.1109/TFUZZ.2007.905915
[5] Yakun Su, B. Chen, C. Lin, and H. Zhang, “A new fuzzy H\infty filter design for nonlinear continuous-time dynamic systems with time-varying delays,” Fuzzy Sets and Systems, vol. 160, no. 24, pp. 3539-3549, 2009. · Zbl 1186.93075 · doi:10.1016/j.fss.2009.07.003
[6] C. Lin, Q.-G. Wang, T. H. Lee, and Y. He, “Fuzzy weighting-dependent approach to H\infty filter design for time-delay fuzzy systems,” IEEE Transactions on Signal Processing, vol. 55, no. 6, pp. 2746-2751, 2007. · Zbl 1390.93489 · doi:10.1109/TSP.2007.893761
[7] E. Fridman and U. Shaked, “An improved delay-dependent H\infty filtering of linear neutral systems,” IEEE Transactions on Signal Processing, vol. 52, no. 3, pp. 668-673, 2004. · Zbl 1369.93623 · doi:10.1109/TSP.2003.822287
[8] G. Feng, “A survey on analysis and design of model-based fuzzy control systems,” IEEE Transactions on Fuzzy Systems, vol. 14, no. 5, pp. 676-697, 2006. · Zbl 05452695 · doi:10.1109/TFUZZ.2006.883415
[9] Y.-C. Lin and J.-C. Lo, “Robust mixed H2/H\infty filtering for time-delay fuzzy systems,” IEEE Transactions on Signal Processing, vol. 54, no. 8, pp. 2897-2909, 2006. · Zbl 1373.93346 · doi:10.1109/TSP.2006.875380
[10] G. Feng, “Robust H\infty filtering of fuzzy dynamic systems,” IEEE Transactions on Aerospace and Electronic Systems, vol. 41, no. 2, pp. 658-670, 2005. · doi:10.1109/TAES.2005.1468755
[11] S. K. Nguang and P. Shi, “Delay-dependent \Bbb H\infty filtering for uncertain time delay nonlinear systems: an LMI approach,” IET Control Theory & Applications, vol. 1, no. 1, pp. 133-140, 2007. · doi:10.1049/iet-cta:20060133
[12] Y.-C. Lin and J.-C. Lo, “Robust mixed H2/H\infty filtering for discrete-time delay fuzzy systems,” International Journal of Systems Science, vol. 36, no. 15, pp. 993-1006, 2005. · Zbl 1126.93362 · doi:10.1080/00207720500404797
[13] C.-S. Tseng and B.-S. Chen, “H\infty fuzzy estimation for a class of nonlinear discrete-time dynamic systems,” IEEE Transactions on Signal Processing, vol. 49, no. 11, pp. 2605-2619, 2001. · doi:10.1109/78.960407
[14] H. Zhang, S. Lun, and D. Liu, “Fuzzy H\infty filter design for a class of nonlinear discrete-time systems with multiple time delays,” IEEE Transactions on Fuzzy Systems, vol. 15, no. 3, pp. 453-469, 2007. · Zbl 05452644 · doi:10.1109/TFUZZ.2006.889841
[15] S. Xu and J. Lam, “Exponential H\infty filter design for uncertain Takagi-Sugeno fuzzy systems with time delay,” Engineering Applications of Artificial Intelligence, vol. 17, no. 6, pp. 645-659, 2004. · doi:10.1016/j.engappai.2004.08.012
[16] J. Yoneyama, “H\infty filtering for fuzzy systems with immeasurable premise variables: an uncertain system approach,” Fuzzy Sets and Systems, vol. 160, no. 12, pp. 1738-1748, 2009. · Zbl 1175.93137 · doi:10.1016/j.fss.2008.09.012
[17] J. Yang, S. Zhong, G. Li, and W. Luo, “Robust H\infty filter design for uncertain fuzzy neutral systems,” Information Sciences, vol. 179, no. 20, pp. 3697-3710, 2009. · Zbl 1171.93351 · doi:10.1016/j.ins.2009.06.024
[18] H. Gao and C. Wang, “Delay-dependent robust H\infty and L2-L\infty filtering for a class of uncertain nonlinear time-delay systems,” IEEE Transactions on Automatic Control, vol. 48, no. 9, pp. 1661-1666, 2003. · Zbl 1364.93210 · doi:10.1109/TAC.2003.817012
[19] K. M. Grigoriadis and J. T. Watson Jr., “Reduced-order H\infty and L2-L\infty filtering via linear matrix inequalities,” IEEE Transactions on Aerospace and Electronic Systems, vol. 33, no. 4, pp. 1326-1338, 1997.
[20] Z. Li and S. Xu, “Fuzzy weighting-dependent approach to robust L2-L\infty filter design for delayed fuzzy systems,” Signal Processing, vol. 89, no. 4, pp. 463-471, 2009. · Zbl 1157.93526 · doi:10.1016/j.sigpro.2008.09.017
[21] Y.-Y. Cao and P. M. Frank, “Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach,” IEEE Transactions on Fuzzy Systems, vol. 8, no. 2, pp. 200-211, 2000. · doi:10.1109/91.842153
[22] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Transactions on Systems, Man and Cybernetics, vol. 15, no. 1, pp. 116-132, 1985. · Zbl 0576.93021 · doi:10.1109/TSMC.1985.6313399
[23] E. Fridman and U. Shaked, “Delay-dependent H\infty control of uncertain discrete delay systems,” European Journal of Control, vol. 11, no. 1, pp. 29-39, 2005. · Zbl 1293.93672 · doi:10.3166/ejc.11.29-37
[24] C. Lin, Q.-G. Wang, T. H. Lee, and Y. He, “Design of observer-based H\infty control for fuzzy time-delay systems,” IEEE Transactions on Fuzzy Systems, vol. 16, no. 2, pp. 534-543, 2008. · Zbl 05516401 · doi:10.1109/TFUZZ.2006.889934
[25] C. Lin, Q.-G. Wang, T. H. Lee, Y. He, and B. Chen, “Observer-based H\infty control for T-S fuzzy systems with time delay: delay-dependent design method,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 37, no. 4, pp. 1030-1038, 2007. · doi:10.1109/TSMCB.2007.891542
[26] C. Lin, Q.-G. Wang, and T. H. Lee, “H\infty output tracking control for nonlinear systems via T-S fuzzy model approach,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 36, no. 2, pp. 450-457, 2006. · doi:10.1109/TSMCB.2005.856723
[27] X. Song, S. Xu, and H. Shen, “Robust H\infty control for uncertain fuzzy systems with distributed delays via output feedback controllers,” Information Sciences, vol. 178, no. 22, pp. 4341-4356, 2008. · Zbl 1148.93311 · doi:10.1016/j.ins.2008.06.017
[28] S. K. Nguang and P. Shi, “\Bbb H\infty output feedback control design for uncertain fuzzy systems with multiple time scales: an LMI approach,” European Journal of Control, vol. 11, no. 2, pp. 157-170, 2005, With discussion. · Zbl 1293.93483 · doi:10.3166/ejc.11.157-166
[29] B. Chen, X. Liu, and S. Tong, “New delay-dependent stabilization conditions of T-S fuzzy systems with constant delay,” Fuzzy Sets and Systems, vol. 158, no. 20, pp. 2209-2224, 2007. · Zbl 1122.93048 · doi:10.1016/j.fss.2007.02.018
[30] C. Lin, Q.-G. Wang, and T. H. Lee, “Delay-dependent LMI conditions for stability and stabilization of T-S fuzzy systems with bounded time-delay,” Fuzzy Sets and Systems, vol. 157, no. 9, pp. 1229-1247, 2006. · Zbl 1090.93024 · doi:10.1016/j.fss.2005.10.001
[31] B. Chen and X. Liu, “Delay-dependent robust H\infty control for T-S fuzzy systems with time delay,” IEEE Transactions on Fuzzy Systems, vol. 13, no. 4, pp. 544-556, 2005. · Zbl 05452507 · doi:10.1109/TFUZZ.2004.840112
[32] S. Zhou, J. Lam, and A. Xue, “H\infty filtering of discrete-time fuzzy systems via basis-dependent Lyapunov function approach,” Fuzzy Sets and Systems, vol. 158, no. 2, pp. 180-193, 2007. · Zbl 1110.93034 · doi:10.1016/j.fss.2006.09.001
[33] L. Wu and Z. Wang, “Fuzzy filtering of nonlinear fuzzy stochastic systems with time-varying delay,” Signal Processing, vol. 89, no. 9, pp. 1739-1753, 2009. · Zbl 1178.93141 · doi:10.1016/j.sigpro.2009.03.011
[34] H. Huang and D. W. C. Ho, “Delay-dependent robust control of uncertain stochastic fuzzy systems with time-varying delay,” IET Control Theory & Applications, vol. 1, no. 4, pp. 1075-1085, 2007. · doi:10.1049/iet-cta:20060313
[35] J. Yoneyama, “Robust stability and stabilizing controller design of fuzzy systems with discrete and distributed delays,” Information Sciences, vol. 178, no. 8, pp. 1935-1947, 2008. · Zbl 1144.93018 · doi:10.1016/j.ins.2007.11.022
[36] J. Qiu, G. Feng, J. Yang, and Y. Sun, “H\infty filtering design for continuous-time nonlinear systems with interval time-varying delay via T-S fuzzy models,” in Proceedings of the 7th Asian Control Conference (ASCC ’09), pp. 1006-1011, Hong Kong, August 2009.
[37] Y. He, Q.-G. Wang, C. Lin, and M. Wu, “Delay-range-dependent stability for systems with time-varying delay,” Automatica, vol. 43, no. 2, pp. 371-376, 2007. · Zbl 1111.93073 · doi:10.1016/j.automatica.2006.08.015
[38] X. Jiang and Q.-L. Han, “On H\infty control for linear systems with interval time-varying delay,” Automatica, vol. 41, no. 12, pp. 2099-2106, 2005. · Zbl 1100.93017 · doi:10.1016/j.automatica.2005.06.012
[39] H. Shao, “New delay-dependent stability criteria for systems with interval delay,” Automatica, vol. 45, no. 3, pp. 744-749, 2009. · Zbl 1168.93387 · doi:10.1016/j.automatica.2008.09.010
[40] K. Gu, V. Kharitonov, and J. Chen, Stability of Time-Delay Systems, Birkhäuser, Boston, Mass, USA, 2003. · Zbl 1039.34067
[41] J. Sun, G. P. Liu, J. Chen, and D. Rees, “Improved delay-range-dependent stability criteria for linear systems with time-varying delays,” Automatica, vol. 46, no. 2, pp. 466-470, 2010. · Zbl 1205.93139 · doi:10.1016/j.automatica.2009.11.002
[42] H. Gao, J. Lam, P. Shi, and C. Wang, “Parameter-dependent filter design with guaranteed \Bbb H\infty performance,” IEE Proceedings of Control Theory and Application, vol. 152, pp. 531-537, 2005. · doi:10.1049/ip-cta:20045050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.