×

Construction of a Pfaff system of Fuchs type with three singular surfaces on a complex projective space. (English. Russian original) Zbl 1180.14009

Differ. Equ. 45, No. 6, 902-906 (2009); translation from Differ. Uravn. 45, No. 6, 883-887 (2009).
Let \(\overline M_ j=\{x;\;P_ j(x)=0\} (j=1,2,3)\) be irreducible algebraic varieties of co-dimension \(1\) on the \(n\)-dimensional complex projective space \(\mathbb{C}\mathbb{P}^ n\). Let \(d Y=\omega Y\) be the linear Pfaff system, where \(\omega=\sum_{j=1}^ 3 U_ j\frac{dP_ j(x)}{P_ j(x)}\) is a differential \(1\)-form, \(Y\) is a second-order square matrix, \(U_ j\) are constant square \(2\times 2\)-matrices, and \(P_ j(x)\) are irreducible homogeneous polynomials of degree \(p_ j\) in \(x=(x_ 1,\dots,x_{n+1})\). For an open set \(M=\mathbb{C}\mathbb{P}^ n-\bigcup_{j=1}^ 3\overline M_ j\), let \(\chi:\pi_ 1\left(x_{_ 0},M\right)\to GL(2,C)\) be a given homomorphism of the fundamental group \(\pi_ 1\left(x_{_ 0},M\right)\) into the general linear group of square non-singular second-order matrices. \(\chi\) takes the generators \(g_ j\) of the fundamental group \(\pi_ 1\left(x_{_ 0},M\right)\) to some monodromy matrices \(V_ j\).
The authors construct a multidimensional Pfaff equation of Fuchs type for a given monodromy group on \(\mathbb{C}\mathbb{P}^ n\). They show that if the irreducible algebraic varieties \(\overline M_ j\) form a pencil of surfaces, i.e., \(P_ j=\alpha_ j R+\beta_ j Q\), then the change of variables \(z=\frac{Q(x)}{R(x)}\) reduces the Pfaff equation \(d Y=\omega Y\) to the ordinary linear differential equation \(dY=\left(\sum_{i=1}^ 3\frac{U_ i}{z+\alpha_ i/\beta_ i}\right)dz Y\) with Fuchs singularities on \(\mathbb{C}\mathbb{P}^ 1\).

MSC:

14D05 Structure of families (Picard-Lefschetz, monodromy, etc.)
58A17 Pfaffian systems
34M35 Singularities, monodromy and local behavior of solutions to ordinary differential equations in the complex domain, normal forms
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Gerard, R. and Levelt, A.H.M., Étude d’une classe particulière de systèmes de Pfaff du type de Fuchs sur l’espace projectif complexe, J. Math. Pures Appl. (9), 1972, vol. 51, no. 2, pp. 189–217. · Zbl 0203.09101
[2] Golubeva, V.A., Reconstruction of a Pfaff System of Fuchs Type from the Generators of the Monodromy Group, Izv. Akad. Nauk SSSR Ser. Mat., 1980, vol. 44, no. 5, pp. 979–998. · Zbl 0464.58004
[3] Bolibrukh, A.A., On the Existence of Fuchsian Systems with Given Asymptotics, Tr. Mat. Inst. Steklova, 1997, vol. 216, pp. 32–44. · Zbl 0995.34080
[4] Kochin, N.E., On a Certain Special Case of the Riemann Problem, Dokl. Akad. Nauk SSSR, 1937, vol. 17, pp. 287–290.
[5] Krylov, B.L., A Solution in a Finite Form for the Riemann Problem for the Gauss System, Tr. Aviats. Inst., Kazan, 1956, vol. 31, pp. 203–245.
[6] Vasilevich, N.D. and Gromak, V.I., Integrability of Complex Pfaff Equations, Differ. Uravn., 1981, vol. 17, no. 4, pp. 735–737. · Zbl 0505.58003
[7] Bourbaki, N., Algebra (Algebra), Moscow: Nauka, 1966. · Zbl 1105.18001
[8] Erugin, N.P., The Riemann Problem. II, Differ. Uravn., 1976, vol. 12, no. 5, pp. 779–799. · Zbl 0329.34005
[9] Schlesinger, L., Über eine Klasse von Differentialsystemen beliebiger Ordnung mit festen kritischen Punkten, J. Reine Angew. Math., 1912, vol. 141, pp. 96–145. · JFM 43.0385.01
[10] Lappo-Danilevskii, I.A., Primenenie funktsii ot matrits k teorii lineinykh sistem obyknovennykh differentsial’nykh uravnenii (Application of Functions of Matrices to the Theory of Linear Systems of Ordinary Differential Equations), Moscow: Gosudarstv. Izdat. Tehn.-Teor. Lit., 1957.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.