×

zbMATH — the first resource for mathematics

Numerical solution of 2d seepage flow problem using discrete singular convolution method. (English) Zbl 1356.76221

MSC:
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76S05 Flows in porous media; filtration; seepage
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aalto, J. (1984), ”Finite element seepage flow nets”, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 8 No. 3, pp. 297-303. , · Zbl 1356.76221
[2] Alyavuz, B. (2009), ”Solution of two-dimensional heat problem in MATLAB environment using discrete singular convolution method (in Turkish)”, International Journal of Engineering Research and Development, Vol. 1 No. 1, pp. 57-63.
[3] Alyavuz, B., Koçyiğit, Ö. and Gültop, T. (2009), ”Numerical solution of seepage problem using quad-tree based triangular finite elements”, International Journal of Engineering and Applied Sciences (IJEAS ), Vol. 1 No. 1, pp. 43-56. · Zbl 1356.76221
[4] Cedergren, H.R. (1967), Seepage, Drainage and Flow Nets, Wiley, New York, NY.
[5] Christian, J.T. (1987), ”Numerical methods and computing in ground engineering”, in Bell, F.G. (Ed.), Ground Engineer’s Reference Book, Chapter 57, Butterworths, London, pp. 13-17.
[6] Civalek, O. (2007a), ”Free vibration and buckling analyses of composite plates with straight-sided quadrilateral domain based on DSC approach”, Finite Elements in Analysis and Design, Vol. 43 No. 13, pp. 1013-22. , · Zbl 1356.76221
[7] Civalek, O. (2007b), ”Numerical analysis of free vibrations of laminated composite conical and cylindrical shells: discrete singular convolution (DSC) approach”, Journal of Computational and Applied Mathematics, Vol. 205 No. 1, pp. 251-71. , · Zbl 1115.74058
[8] Civalek, O. (2007c), ”Three-dimensional vibration, buckling and bending analyses of thick rectangular plates based on discrete singular convolution method”, International Journal of Mechanical Sciences, Vol. 49 No. 6, pp. 752-65. , · Zbl 1356.76221
[9] Civalek, O. (2008), ”Free vibration analysis of symmetrically laminated composite plates with first-order shear deformation theory (FSDT) by discrete singular convolution method”, Finite Elements in Analysis and Design, Vol. 44 Nos 12/13, pp. 725-31. , · Zbl 1356.76221
[10] Civalek, O. (2009), ”A four-node discrete singular convolution for geometric transformation and its application to numerical solution of vibration problem of arbitrary straight-sided quadrilateral plates”, Applied Mathematical Modelling, Vol. 33 No. 1, pp. 300-14. , · Zbl 1167.74484
[11] Harr, M.E. (1962), Groundwater and Seepage, McGraw-Hill, New York, NY.
[12] Lewis, R.W. and Schrefler, B.A. (1998), The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, Wiley, Chichester. · Zbl 0935.74004
[13] Lewis, R.W., Nithiarasu, P. and Seetharamu, K.N. (2004), Fundamentals of the Finite Element Method for Heat and Fluid Flow, Wiley, Chichester.
[14] Namin, M.M. and Motamedi, K. (2009), ”A non-hydrostatic free surface 2D vertical model using discrete singular convolution (DSC) method”, Iranian Journal of Science and Technology Transaction B: Engineering, Vol. 33 No. 1, pp. 95-108.
[15] Navti, S.E., Lewis, R.W. and Taylor, C. (1998), ”Numerical simulation of viscous free surface flow”, International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 8 No. 4, pp. 445-64. , · Zbl 0943.76051
[16] Reddy, J.N. (1993), An Introduction to the Finite Element Method, McGraw-Hill, New York, NY.
[17] Sarler, B., Perko, J. and Chen, C.-S. (2004), ”Radial basis function collocation method solution of natural convection in porous media”, International Journal of Numerical Methods for Heat and Fluid Flow, Vol. 14 No. 2, pp. 187-212. , · Zbl 1103.76361
[18] Secgin, A. and Sarigul, A.S. (2008), ”Free vibration analysis of symmetrically laminated thin composite plates by using discrete singular convolution (DSC) approach: algorithm and verification”, Journal of Sound and Vibration, Vol. 315 Nos 1/2, pp. 197-211. , · Zbl 1356.76221
[19] Secgin, A. and Sarigul, A.S. (2009), ”A novel scheme for the discrete prediction of high-frequency vibration response: discrete singular convolution - mode superposition approach”, Journal of Sound and Vibration, Vol. 320 Nos 4/5, pp. 1004-22. , · Zbl 1356.76221
[20] Wan, D.C., Patnaik, B.S.V. and Wei, G.W. (2002), ”Discrete singular convolution-finite subdomain method for the solution of incompressible viscous flows”, Journal of Computational Physics, Vol. 180 No. 1, pp. 229-55. , · Zbl 1130.76403
[21] Wang, H.F. and Anderson, M.P. (1995), Introduction to Groundwater Modeling: Finite Difference and Finite Element Methods, Academic Press, New York, NY.
[22] Wei, G.W. (1999), ”Discrete singular convolution for the solution of the Fokker-Planck equation”, Journal of Chemical Physics, Vol. 110 No. 18, pp. 8930-42. , · Zbl 1356.76221
[23] Wei, G.W. (2000), ”A unified approach for the solution of the Fokker-Planck equation”, Journal of Physics A: Mathematical and General, Vol. 33 No. 27, pp. 4935-53. · Zbl 0988.82047
[24] Wei, G.W. (2001a), ”A new algorithm for solving some mechanical problems”, Computer Methods in Applied Mechanics and Engineering, Vol. 190 Nos 15-17, pp. 2017-30. , · Zbl 1013.74081
[25] Wei, G.W. (2001b), ”Discrete singular convolution for beam analysis”, Engineering Structures, Vol. 23 No. 9, pp. 1045-53. , · Zbl 1356.76221
[26] Wei, G.W. (2001c), ”Vibration analysis by discrete singular convolution”, Journal of Sound and Vibration, Vol. 244 No. 3, pp. 535-53. , · Zbl 1237.74095
[27] Wei, G.W., Zhao, Y.B. and Xiang, Y. (2001), ”The determination of natural frequencies of rectangular plates with mixed boundary conditions by discrete singular convolution”, International Journal of Mechanical Sciences, Vol. 43 No. 8, pp. 1731-46. , · Zbl 1018.74017
[28] Wei, G.W., Zhao, Y.B. and Xiang, Y. (2002), ”Discrete singular convolution and its application to the analysis of plates with internal supports. Part 1: theory and algorithm”, International Journal for Numerical Methods in Engineering, Vol. 55 No. 8, pp. 913-46. , · Zbl 1058.74643
[29] Zhao, Y.B., Wei, G.W. and Xiang, Y. (2002a), ”Discrete singular convolution for the prediction of high frequency vibration of plates”, International Journal of Solids and Structures, Vol. 39 No. 1, pp. 65-88. , · Zbl 1090.74604
[30] Zhao, Y.B., Wei, G.W. and Xiang, Y. (2002b), ”Plate vibration under irregular internal supports”, International Journal of Solids and Structures, Vol. 39 No. 5, pp. 1361-83. , · Zbl 1090.74603
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.